Borut Černe (Author), Martin Petkovšek (Author), Jože Duhovnik (Author), Jože Tavčar (Author)

Abstract

The presented work is focused on the development of a comprehensive thermo-mechanical model for predicting the temperature rise in thermoplastic polymer spur gears with any desired profile geometry while running. The specific constitutional behavior of thermoplastics influences the gear-meshing pattern, which can deviate substantially from ideal gear meshing, as typically exhibited by metal gears in moderate-loading conditions. Taking this aspect into account is of paramount importance if realistic temperature-rise predictions are to be made. The thermal response of the considered gear pair is studied thoroughly from both the analytical and experimental standpoints. Good agreement was found between the results of the model and the experimental measurements performed using a high-speed thermal imaging infrared camera, although it was also observed that the real-life temperature rise can increase noticeably if large geometric tolerance deviations from the ideal profile geometry are present. The presented experimental approach also offers the possibility to observe the temperature rise inside and outside the meshing cycle.

Keywords

polymer gears;thermal analysis;sliding friction;contact mechanics IR thermography;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FS - Faculty of Mechanical Engineering
UDC: 621.833:678(045)
COBISS: 17011483 Link will open in a new window
ISSN: 0094-114X
Views: 443
Downloads: 190
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary keywords: polimerni zobniki;termične analize;drsno trenje;kontaktna mehanika;IR termografija;
Type (COBISS): Article
Pages: str. 1-22
Issue: ǂVol. ǂ146
Chronology: Apr. 2020
DOI: 10.1016/j.mechmachtheory.2019.103734
ID: 12717702