Language: | Slovenian |
---|---|
Year of publishing: | 2021 |
Typology: | 2.09 - Master's Thesis |
Organization: | UL FRI - Faculty of Computer and Information Science |
Publisher: | [T. Lučovnik] |
UDC: | 519.1 |
COBISS: | 66285571 |
Views: | 848 |
Downloads: | 62 |
Average score: | 0 (0 votes) |
Metadata: |
Secondary language: | English |
---|---|
Secondary title: | Nordhaus-Gaddum type inequalities for Laplacian eigenvalues |
Secondary abstract: | For a simple graph $G$ of order $n$, we define its adjacency matrix and Laplacian matrix. Both have real eigenvalues. Let $\theta_1(G) \geq \cdots \geq \theta_n(G)$ be the eigenvalues of the adjacency matrix and $\lambda_1(G) \geq \cdots \geq \lambda_n(G) = 0$ the eigenvalues of the Laplacian matrix of graph $G$. We study Nordhaus-Gaddum type inequalities for the eigenvalues of these two matrices. These are upper and lower bounds for sums of the forms $\theta_i(G) + \theta_i(\overline{G})$ and $\lambda_j(G) + \lambda_j(\overline{G})$, where $\overline{G}$ denotes the graph complement of $G$. The focus of this work is on the sums for the smallest eigenvalue of the adjacency matrix and the largest two eigenvalues of the Laplacian matrix. |
Secondary keywords: | mathematics;Nordhaus-Gaddum type inequalities;adjacency matrix;Laplacian matrix;eigenvalues;algebraic connectivity; |
Type (COBISS): | Master's thesis/paper |
Study programme: | 0 |
Embargo end date (OpenAIRE): | 1970-01-01 |
Thesis comment: | Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 2. stopnja |
Pages: | IX, 70 str. |
ID: | 13011137 |