magistrsko delo
Blaž Česnik (Author), Matej Kristan (Mentor)

Abstract

Zaznavanje ovir je ključnega pomena za avtonomna plovila, saj lahko ob nepravilni detekciji pride do trka plovila ali nepotrebnega izogibanja objektov, ki ne obstajajo. Temu se lahko izognemo z uporabo natančnejših modelov za detekcijo takšnih ovir. Ker so avtonomna plovila dokaj neraziskano področje v primerjavi z avtonomnimi vozili, je posledično na voljo tudi manj anotiranih semantično segmentacijskih zbirk vodne domene, s katerimi bi lahko učili mrežo. Ker je ročna anotacija za generiranje takšnih zbirk draga in vzame veliko časa, je uporaba slik brez anotacij uporabna alternativa. V magistrskem delu se posvetimo evalvaciji metod, namenjenim nenadzorovani domenski adaptaciji, ki za učenje uporabljajo anotirane slike iz izvorne zbirke, ter slike brez anotacij iz ciljne zbirke. V ta namen preizkusimo adaptacijske metode notranje domenske adaptacije, adaptacijo z manipulacijo spektra, metodo s prileganjem instanc ter dvosmerno učenje. Analizo izvajamo na referenčni mreži WaSR [5], ki je trenutno najuspešnejša področju segmentacije na vodni domeni, analiziramo pa tudi adaptacijo na reducirani verziji mreže WaSR, pri kateri ne upoštevamo dodatnih regularizacij uporabljenih v popolni referenčni mreži. Analiza je pokazala, da ob adaptaciji reducirane mreže WaSR, dosega najboljše rezultate metoda adaptacije z manipulacijo spektra, ki za približno 6% izboljša F-mero popolne referenčne mreže, pri adaptaciji popolne mreže je metoda za približno 7% slabša, z uporabo referenčne mreže WaSR s sklopljeno izgubno funkcijo ločevanja vode pa za približno 3% boljša kot popolna mreža WaSR.

Keywords

delno nadzorovano učenje;video segmentacija;nenadzorovana domenska adaptacija;računalništvo in informatika;magisteriji;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UL FRI - Faculty of Computer and Information Science
Publisher: [B. Česnik]
UDC: 004.93:629.5(043.2)
COBISS: 69224707 Link will open in a new window
Views: 352
Downloads: 67
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Video segmentation of water scenes using semi-supervised learning
Secondary abstract: Obstacle detection is a crucial component in unmanned surface vehicles for collision prevention and unnecessary stopping at false detections. Autonomous vessels are a rather unexplored area compared to autonomous ground vehicles, thus there are much fewer annotated datasets for training modern obstacle detectors. Since manual acquisition of ground truth segmentation data is time consuming and expensive, a viable alternative is training with low supervision. In the master's thesis, we focus on evaluation of unsupervised domain adaptation methods, which use an annotated source dataset and a target dataset without annotation. We test four modern adaptation methods: Intra doman adaptation, Fourier domain adaptation, Instance matching and Bidirectional learning. We perform analysis on complete WaSR [5] method, which is currently state-of-the-art in the field of semantic segmentation on water domain, and on a reduced WaSR method version, without additional regularizations. Our analysis shows, that on reduced WaSR, Fourier domain adaptation gets the best F-measure, which outperforms original WaSR trained without adaptation by over 6%. We then test the same adaptation method on original WaSR and discover, that the Fourier method underperforms the complete reference network for approximately 7% F-measure, and outperforms for approximately 3% if we use WaSR method with only IMU.
Secondary keywords: computer vision;semi supervised learning;video segmentation;unsupervised domain adaptation;computer science;computer and information science;master's degree;Računalniški vid;Vodna plovila;Računalništvo;Univerzitetna in visokošolska dela;
Type (COBISS): Master's thesis/paper
Study programme: 1000471
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Pages: 65 str.
ID: 13085164