master thesis
Abstract
This master thesis addresses the issue of protein cluster quantification in superresolution
microscopy. Methods in super-resolution microscopy, typically referred
to as single molecule localization microscopy, have greatly improved the optical
resolution by sequentially exciting only the part of fluorescent molecules and image
their signals through time. The signal is processed and stored as a localization
in space. The improved resolution has further demonstrated molecular clustering
as a relevant biological feature for cellular function. However, each cluster can be
composed of several molecules and each of them is subjected to stochasticity of
molecule labeling and complex photophysics of the fluorescent probes. This leads
to a broad distribution of number of localizations for each cluster size, which
impacts exact quantification of cluster stoichiometry.
The aim of this master thesis was to investigate the performance of nested
sampling compared to the previously developed method in Zanacchi et al. (2017).
In the said article, the authors developed a method based on numerical approximation
which estimated the total protein count as the mixture model of several
oligomeric states. The proportions of each oligomeric state were estimated based
on the number of localizations in each cluster. In this master thesis, we implemented
the nested sampling based on the mixture model described above and
compared both approaches on simulated and real data. The goal of both approaches
was firstly to estimate the number of different oligomeric states in the
model and secondly their corresponding proportions.
The methods were evaluated in a simulation study and on the data generated
from STORM imaging. The simulation study showed better performance of
nested sampling especially in smaller samples, while in larger samples the methods
performed similarly. In the STORM image analysis, where all the samples were large (n > 1000), all fitted distributions were almost identical.
Keywords
super-resolution microscopy;protein quantification;STORM;nested sampling;Bayesian statistic;evidence;
Data
Language: |
English |
Year of publishing: |
2021 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UL FE - Faculty of Electrical Engineering |
Publisher: |
[T. Košuta] |
UDC: |
303.5(043.3) |
COBISS: |
71716355
|
Views: |
17 |
Downloads: |
4 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Gnezden algoritem vzorčenja za določanje števila molekul proteina v super-resolucijski mikroskopiji |
Secondary abstract: |
Magistrsko delo obravnava težavo kvantifikacije proteinov v super-resolucijski
mikroskopiji. Metode super-resolucijske mikroskopije so bistveno izboljšale
ločljivost na način, da naenkrat vzbudijo le del fluorescenčnih molekul in jih
slikajo. Ta proces je izveden večkrat zaporedoma, končna slika pa je sestavljena
iz vseh zaporednih slik. Vsak signal je obdelan in shranjen kot lokacija molekule
v prostoru. Kljub izboljšanju ločljivosti je meja difrakcije teh metod med 20 in 50
nm, zaradi česar so molekule, ki so si bližje od te razdalje, na končni rekonstruirani
sliki vidne kot gruča. Gručenje proteinov je biološka lastnost, ki nas zanima.
Ker je posamezna gruča na končni sliki lahko sestavljena iz ene ali več ločenih
molekul in vsaka od molekul lahko odda več signalov, kvantifikacija s preprostim
štetjem posameznih gruč ni mogoča in problem ni lahko rešljiv.
Namen magistrskega dela je bil raziskati uspešnost “nested sampling” metode
v primerjavi s predhodno razvito metodo v Zanacchi et al. (2017). V omenjenem
članku so avtorji razvili metodo, ki je skupno število proteinov ocenila kot mešani
model več oligomernih stanj. Delež vsakega oligomernega stanja je bil ocenjen
na podlagi števila lokalizacij v vsaki gruči. Rezultati v Zanacchi et al. (2017)
so bili pridobljeni z numerično optimizacjo. V tej magistrski nalogi smo izvedli
“neseted sampling” na podlagi zgoraj opisanega mešanega modela in primerjali
oba pristopa na simuliranih in realnih podatkih. Cilj obeh pristopov je bil najprej
oceniti število različnih oligomernih stanj in nato oceniti še njihov delež v
mešanem modelu.
Metode so bile ovrednotene s simulacijsko študijo in na podatkih, pridobljenih
s STORM slikanjem. Simulacijska študija je pokazala boljše delovanje “neseted
sampling”, zlasti pri manjših vzorcih, medtem ko pri večjih vzorcih večjih razlik
med metodami ni bilo. V analizi STORM podatkov, kjer so bili vsi vzorci veliki
(n > 1000), so si bile ocenjene porazdelitve iz obeh metod zelo podobne. |
Secondary keywords: |
superresolucijska mikroskopija;kvantifikacija števila proteinov;STORM;vzorčenje;Bayesova statistika;robno verjetje;magisteriji; |
Type (COBISS): |
Master's thesis/paper |
Study programme: |
1000927 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za elektrotehniko |
Pages: |
XX, 73 str. |
ID: |
13226984 |