delo diplomskega seminarja
Katarina Šipec (Author), Sašo Strle (Mentor)

Abstract

V tem delu predstavimo mnogoterosti, ki jih lahko dobimo s štirimi lepljenji po dveh lic oktaedra. Ker nastali takšni zlepki niso vedno mnogoterosti, vpeljemo pojem prisekanega oktaedra in obravnavamo lepljenja njegovih šestkotnih lic. Najprej se osredotočimo na analogna lepljenja mnogokotnikov v kompaktne sklenjene ploskve. Nastale mnogoterosti iz prisekanega oktaedra ločimo glede na njihov rob in za vsak rob zabeležimo eno lepljenje v mnogoterost z izbranim robom.

Keywords

matematika;oktaeder;mnogoterosti;lepljenje;homeomorfizmi;rob;kvocientni prostor;orientacija;ploskve;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FMF - Faculty of Mathematics and Physics
Publisher: [K. Šipec]
UDC: 515.1
COBISS: 73955075 Link will open in a new window
Views: 957
Downloads: 145
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Octahedral manifolds
Secondary abstract: In this work, we present the manifolds that can be obtained by gluing together in pairs the faces of an octahedron. Since the resulting gluings are not always manifolds, we introduce the notion of a truncated octahedron and consider the gluings of its hexagonal faces. We first focus on analogous gluings of polygons into compact surfaces without boundary. The resulting manifolds obtained from the truncated octahedron are separated according to their boundary, and for each boundary we present one gluing into the manifold with the selected boundary.
Secondary keywords: mathematics;octahedron;manifolds;gluing;homeomorphisms;boundary;quotient space;orientation;surfaces;
Type (COBISS): Final seminar paper
Study programme: 0
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja
Pages: 39 str.
ID: 13243601
Recommended works: