diplomsko delo
Abstract
Cilj diplomskega dela je raziskati razlike med igro agentov, naučenih s pomočjo
umetne inteligence, in človeka v pokru.
Prva koraka sta bila učenje različice pokra, imenovane No Limit Texas
Holde’m, in spoznavanje pravil igre. Naslednji korak je bil izgradnja poker
agenta, ki bi ga lahko s pomočjo strojnega učenja naučili igranja igre. Odločili
smo se za algoritem, ki spada v družino algoritmov spodbujevanega učenja,
imenovan counterfactual regret minimization.
Agenta smo naučili igre poker. Zatem smo inicializirali dva agenta, ki
sta igrala drug proti drugemu, pri čemer smo beležili njune poteze. Ko
smo generirali dovolj iger agentov, smo poiskali podatke o igrah ljudi. V
naslednjem koraku smo pripravili skripto za analizo med podatki igre agentov
in podatki igre ljudi. V tej skripti smo analizirali več vidikov, ki so bili osnova
za sklep o slogu igre določenega igralca ali agenta.
Na podlagi poskusa smo prišli do sklepa, da so agenti, naučeni s pomočjo
našega algoritma, veliko dejavnejši in agresivnejši od ljudi. Dejavna igra v
tem kontekstu pomeni, da igralec igra veliko iger, agresivna igra pa, da veliko
stavi in da tudi pogosto zavaja ali ’blefira’. Te ugotovitve se ujemajo z ugotovitvami drugih ekip, ki so s pomočjo umetne inteligence učili inteligentne
agente na področju pokra z algoritmom counterfactual regret minimization.
Keywords
umetna inteligenca;igra poker;igranje igre;računalništvo in informatika;univerzitetni študij;diplomske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2021 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FRI - Faculty of Computer and Information Science |
Publisher: |
[J. Urankar] |
UDC: |
004.8:685.811(043.2) |
COBISS: |
77195779
|
Views: |
269 |
Downloads: |
40 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Machine learning in poker |
Secondary abstract: |
The goal of this diploma thesis is finding the differences betwen human and
artifical agent in poker.
The first step was preforming research on the specific version of poker,
named No Limit Texas Holde’m and learning the rules of the game. The next
step was a creation of an intelligent poker agent, which is trained to play
the specified version of poker, using machine learning. We decided to use
an algorithm, which belongs in the family of machine learning algorithms,
known as reinforcement learning. The algorithm is called counterfactual
regret minimization. After the selection of the algorithm we trained the
intelligent agent and created two instances of the same agent. Those two
agents than played poker against each other and we were monitoring and
noting every move they made. When we generated enough games between
agents, we created a script for analysing the data. In the script we analysed
several aspects of the game, which were the basis for our conclusion on the
game style of certain virtual agent versus human player.
Our conclusion on the basis of the experiment is, that virtual agents,
trained with our algorithm, play much more actively and more aggressively
than humans. Active game in this context means, that a player plays many
games. Aggressive game means that the player bets a lot and often bluffs.
These findings are in line with the other researchers findings, which used
counter- factual regret minimization for creating an intelligent agent. |
Secondary keywords: |
machine learning;big data;poker;counterfactual regret minimization;computer science;diploma;Strojno učenje;Poker;Računalništvo;Univerzitetna in visokošolska dela; |
Type (COBISS): |
Bachelor thesis/paper |
Study programme: |
1000468 |
Thesis comment: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
Pages: |
44 str. |
ID: |
13390862 |