magistrsko delo
Abstract
V magistrskem delu smo se ukvarjali z okrepitvenim učenjem agentov za igranje računalniških iger. V ta namen smo implementirali tri modele agenta, ki temeljijo na uporabi nevronske mreže za aproksimacijo funkcije vrednosti akcij, in predlagali lastno izboljšano arhitekturo dvobojevalne dvojne Q-mreže. Učenje smo izvajali na igrah Pong in Beamrider iz nabora iger Atari 2600. Ugotovili smo, da z našim pristopom dosežemo boljšo zmogljivost agenta kot globoka Q-mreža, dvojna globoka Q-mreža in dvojna globoka Q-mreža z dvobojevalno arhitekturo v igri Pong, medtem ko se v igri Beamrider agent uči počasneje, predvidoma zaradi šuma v drugačni predstavitvi stanja, ki ga predlagani model uporablja.
Keywords
globoko okrepitveno učenje;nevronske mreže;globoka Q-mreža;dvobojevalna arhitektura;igre Atari;magistrske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2021 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UM FERI - Faculty of Electrical Engineering and Computer Science |
Publisher: |
[M. Bozhinova] |
UDC: |
004.85:004.96(043.2) |
COBISS: |
83074563
|
Views: |
285 |
Downloads: |
55 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Deep reinforcement learning for playing games based on video input |
Secondary abstract: |
In the master's thesis, we dealt with reinforcement learning of agents for playing computer games. To this end, we implemented three agent models based on the use of neural networks as action value function approximators, and proposed our own improved architecture of the dueling double Q-network. We conducted the training on the games Pong and Beamrider from the Atari 2600 games. We found that with our approach we achieve better agent performance than deep Q-networks, double deep Q-networks and double deep Q-networks with dueling architecture in the game Pong, while in Beamrider the agent learns more slowly, presumably due to the noise in the different representation of the state used by the proposed model. |
Secondary keywords: |
deep reinforcement learning;neural networks;deep Q-network;dueling architecture;Atari games;Pong;Beamrider; |
Type (COBISS): |
Master's thesis/paper |
Thesis comment: |
Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Računalništvo in informacijske tehnologije |
Pages: |
XII, 52 str. |
ID: |
13394388 |