delo diplomskega seminarja
Brina Pirc (Author), Damjana Kokol-Bukovšek (Mentor), Aleš Toman (Co-mentor)

Abstract

Binomski model je model finančnega trga z eno delnico in netveganim bančnim računom, ki se uporablja za vrednotenje delniških opcij. V delu diplomskega seminarja nas je zanimalo, ali formulo za vrednotenje evropskih nakupnih opcij z binomskim modelom lahko zapišemo v zaključeni obliki. To je pomembno, saj zaključena oblika pripomore k učinkovitejšemu računanju. Formula za premijo vsebuje hipergeometrično vrsto. Pri iskanju zaključenih oblik hipergeometričnih vrst smo si pomagali z Gosperjevim algoritmom, katerega glavna značilnost je, da je popoln. To pomeni, da nam bodisi vrne vsoto zapisano v zaključeni obliki bodisi nam pove, da taka oblika ne obstaja. S pomočjo algoritma smo prišli do zaključka, da pri vrednotenju opcij z binomskim modelom zaključena oblika ne obstaja.

Keywords

finančna matematika;Gosperjev algoritem;računanje v zaključeni obliki;binomski model;vrednotenje opcij;hipergeometrična zaporedja;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL EF - Faculty of Economics
Publisher: [B. Pirc]
UDC: 519.8
COBISS: 79164163 Link will open in a new window
Views: 723
Downloads: 45
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Computational complexity of the binomial model
Secondary abstract: The binomial option pricing model is a financial market model with a stock and a risk-free bank account. It is used for the valuation of stock options. The main question of this thesis is whether the plain-vanilla European option pricing formula can be expressed in closed form. This is important because a closed-form solution increases the effectiveness of the calculations. The formula mentioned above contains a hypergeometric series. To find closed-form expressions for hypergeometric series, we use Gosper's algorithm. The key feature of the algorithm is the so-called completeness. This means that it either returns a sum in closed form or tells us that there is no such form. In the end, we conclude that the binomial option pricing formula for plain-vanilla European options has no such closed form.
Secondary keywords: Gosper algorithm;closed-form computation;binomial model;option pricing;hypergeometric sequences;
Type (COBISS): Final seminar paper
Study programme: 0
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja
Pages: 28 str.
ID: 13595045
Recommended works: