Bor Mojškerc (Author), Dunja Ravnikar (Author), Roman Šturm (Author)

Abstract

This paper presents a novel technique of monitoring laser surface remelting (LSR) via measurements of process generated acoustic emission (AE). The LSR conditions include a variable laser power level and an ambient air or argon 5.0 inert gas atmosphere. The microstructure and microhardness of the remelted surface layer are evaluated. The recorded AE signal datasets are analysed via the wavelet decomposition technique. The resulting energy and energy proportions of approximation and detail coefficients are calculated. The decomposed AE signal features are evaluated in correlation with the LSR process conditions. A supervised machine learning cubic support vector machine classifier type is used for the classification of laser pulses. The experimental results show an overall 98% classification accuracy into the corresponding LSR laser power level and atmosphere conditions, confirming the utility of monitoring the LSR process and the resulting material surface layer characteristics via the AE wavelet decomposition technique.

Keywords

lasers;surface remelting;acoustic emission;signal processing;wavelet;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FS - Faculty of Mechanical Engineering
UDC: 621.7+621.9:535
COBISS: 80445699 Link will open in a new window
ISSN: 2238-7854
Views: 170
Downloads: 85
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary keywords: laserji;površinsko pretaljevanje;akustična emisija;procesiranje signalov;valčna dekompozicija;
Type (COBISS): Article
Pages: str. 3365-3374
Issue: ǂVol. ǂ15
Chronology: Nov./Dec. 2021
DOI: 10.1016/j.jmrt.2021.10.010
ID: 13700552
Recommended works:
, magistrsko delo magistrskega študijskega programa II. stopnje Strojništvo
, zaključna naloga Univerzitetnega študijskega programa I. stopnje Strojništvo - Razvojno raziskovalni program