Uroš Čibej (Author), Luka Fürst (Author), Jurij Mihelič (Author)

Abstract

We introduce a new equivalence on graphs, defined by its symmetry-breaking capability. We first present a framework for various backtracking search algorithms, in which the equivalence is used to prune the search tree. Subsequently, we define the equivalence and an optimization problem with the goal of finding an equivalence partition with the highest pruning potential. We also position the optimization problem into the computational-complexity hierarchy. In particular, we show that the verifier lies between P and NP-complete problems. Striving for a practical usability of the approach, we devise a heuristic method for general graphs and optimal algorithms for trees and cycles.

Keywords

grafna ekvivalenca;razbijanje simetrij;sestopanje;iskanje monomorfizmov;rezanje iskalnega drevesa;algoritem na grafih;graph equivalence;symmetry breaking;backtracking;monomorphism search;search tree pruning;graph algorithm;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FRI - Faculty of Computer and Information Science
UDC: 004:519.17
COBISS: 1538408387 Link will open in a new window
ISSN: 2073-8994
Views: 232
Downloads: 44
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary keywords: grafna ekvivalenca;razbijanje simetrij;sestopanje;iskanje monomorfizmov;rezanje iskalnega drevesa;algoritem na grafih;
Type (COBISS): Article
Pages: str. 1-26
Volume: ǂVol. ǂ11
Issue: ǂno. ǂ10
Chronology: Oct. 2019
DOI: 10.3390/sym11101300
ID: 13925520