magistrsko delo
Abstract
V sklopu pričujočega dela izdelamo simulacijski model generičnega električnega
vozila, s katerim virtualno vozimo po naključno kreiranih cestah z različnimi na-
klonskimi profili in hitrostmi vozila. Nato podatke o vožnji uporabimo za strojno
učenje učnih modelov, kjer z računanjem optimiziramo izkoristek vožnje za po-
ljubno pot. Delo je sestavljeno iz 7 sklopov. V prvem sklopu opišemo vozno-
merilne cikle kot sta NEDC in WLTP ter kreiranje naključnih hitrostnih profilov,
ki so hibrid med NEDC in WLTP. V drugem sklopu opišemo ravnovesje sil, ki
vplivajo na osebno vozilo, tisto pogonsko ter ostale, ki delujejo v nasprotno smer.
V tretjem sklopu opišemo model baterije ter njegovo implementacijo v Simulinku.
Tukaj vključimo nekaj kronološko pomembnih podatkov ter uporabljene tehno-
logije za izdelavo baterij. Najbolj obsežno poglavje oziroma sklop je četrti, kjer
predstavimo sinhronski motor, ki je v večji meri predstavljen z vpoglednimi tabe-
lami, ki so bile predhodno izračunane z metodo končnih elementov in definirajo
lastnosti pogonskega motorja v posameznih obratovalnih točkah. Vključimo tudi
ustrezne grafe simulacijskih rezultatov. V petem sklopu opišemo namen regulacije
ali krmiljenja motorja ter PI regulator, ki je uporabljen v našem modelu vozila za
regulacijo navora, kot vhod pa dobi dejansko hitrost in referenčno hitrost vozila.
V šestem sklopu opišemo algoritme strojnega učenja in kreirane učne modele, kot
so nevronska mreža, metoda podpornih vektorjev in k-najbližjih sosedov. V za-
dnjem, sedmem sklopu analiziramo in ovrednotimo rezultate ter opišemo možno
nadaljnje delo.
Keywords
WLTP cikel;fizikalno-matematični modeli električnega vozila;strojno učenje;sinhronski motorji;IPM motor;magisteriji;
Data
Language: |
Slovenian |
Year of publishing: |
2021 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UL FE - Faculty of Electrical Engineering |
Publisher: |
[P. Kocuvan] |
UDC: |
621.31(043.3) |
COBISS: |
86219779
|
Views: |
207 |
Downloads: |
42 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Selection of electrical vehicle's motor power applying machine learning methods |
Secondary abstract: |
As part of the present work, we create a simulation model of a generic electric
vehicle with which we virtually drive on randomly created roads, with different
inclination profiles and vehicle speeds. Later, we use the data of the ride itself
to train learning models that optimize the calculation of route efficiency for any
route. The work consists of 7 chapters. In the first part, we describe driving-
measuring cycles such as NEDC and WLTP and how to create a random speed
profile for the needs of the master’s thesis, which profile is a hybrid between NEDC
and WLTP. In the second chapter, we describe the balance of forces on the road,
ie the forces that affect the personal vehicle, the propulsion, and others that act
in the opposite direction. In the third part, we describe the battery model and
its implementation in Simulink. Here we include some chronologically important
data and the technologies used to make the batteries. The most extensive chapter
or section is the fourth, where we present a synchronous motor, which is largely
represented by look-up tables. We also include the corresponding graphs of the
simulation results. In the fifth chapter, we describe the purpose of control, and
the PI regulator used in our vehicle model for torque control, where the input of
the controller gets the actual speed and reference speed. In the sixth chapter, we
describe machine learning algorithms and create learning models such as neural
network, support vector machine, and k-nearest neighbors. In the last seventh
chapter, we analyze the results and describe further work. |
Secondary keywords: |
WLTP cycle;mathematical model of electric vehicle;machine learning;synhronous motor;IPM motor; |
Type (COBISS): |
Master's thesis/paper |
Study programme: |
1000316 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za elektrotehniko |
Pages: |
XXII, 107 str. |
ID: |
13990475 |