Jelena Vasiljević (Author), Marija Čolović (Author), Nataša Čelan Korošin (Author), Matic Šobak (Author), Žiga Štirn (Author), Ivan Jerman (Author)

Abstract

The production of sustainable and effective flame retardant (FR) polyamide 6 (PA6) fibrous materials requires the establishment of a novel approach for the production of polyamide 6/FR nanodispersed systems. This research work explores the influence of three different flame-retardant bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivatives on the comprehensive properties of in situ produced PA6/FR systems. To this end, in situ water-catalyzed ring-opening polymerization of ε-caprolactam was conducted in the presence of three different bridged DOPO derivatives, e.g., one P−N bond phosphonamidate derivative and two P−C bond phosphinate derivatives. The selected bridged DOPO derivatives mainly act in the gas phase at the temperatures that relatively match the PA6 pyrolysis specifics. The effects of the FRs on the dispersion state, morphological, molecular, structural, melt-rheological, and thermal properties of the in situ synthesized PA6 were evaluated. The specific advantage of this approach is one-step production of PA6 with uniformly distributed nanodispersed FR, which was obtained in the case of all three applied FRs. However, the applied FRs differently interacted with monomer and polymer during the polymerization, which was reflected in the length of PA6 chains, crystalline structure, and melt-rheological properties. The applied FRs provided a comparable effect on the thermal stability of PA6 and stabilization of the PA6/FR systems above 450 °C in the oxygen-assisted pyrolysis. However, only with the specifically designed FR molecule were the comprehensive properties of the fiber-forming PA6 satisfied for the continuous conduction of the melt-spinning process.

Keywords

poliamid 6;polimerizacija;termična stabilnost;PA6;bridged DOPO derivatives;in situ polymerization;thermal stability;flame retardancy;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FKKT - Faculty of Chemistry and Chemical Technology
UDC: 678:66.095.26:543.57
COBISS: 1538555843 Link will open in a new window
ISSN: 2073-4360
Views: 191
Downloads: 65
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary keywords: poliamid 6;polimerizacija;termična stabilnost;
Type (COBISS): Article
Pages: str. 1-18
Volume: ǂVol. ǂ12
Issue: ǂiss. ǂ3
Chronology: Mar. 2020
DOI: 10.3390/polym12030657
ID: 14031671