magistrsko delo
Žiga Kokelj (Author), Lovro Šubelj (Mentor), Matej Trampuš (Co-mentor)

Abstract

Bitcoin s svojo odprtostjo in psevdonimnostjo nudi mnoge priložnosti in izzive. Eden od izzivov je sledenje označenim kovancem skozi omrežje Bit- coin transakcij z namenom opozarjanja na izhode transakcij, ki izvirajo iz kriminalnih dejanj. Zaradi velikega števila vozlišč in kompleksnosti grafa transakcij smo razvili metode za preiskovanje tega omrežja. V magistrski nalogi smo implementirali znane metode in jim dodali novo metodo, ime- novano COMB. Pripravili in optimizirali smo podatkovno bazo, ki omogoča tako preiskovanje ter pridobili vzorca sumljivih in naključnih transakcij. Na njih smo pognali metode in analizirali dobljene rezultate. Ugotovili smo, da imajo vse metode določene prednosti in slabosti. Analizirali smo preseke grafov, nastalih z različnimi metodami, saj imajo te transakcije višjo ver- jetnost za povezavo z izvorno transakcijo. Pripravili smo tudi podatkovno bazo, ki vključuje dodatne podatke, ki jih metode pri svojem odločanju lahko uporabijo. Analiza je pokazala velik potencial tega pristopa, saj smo že na razmeroma majhni bazi v več primerih prišli do znanih transakcij.

Keywords

Bitcoin;veriženje blokov;analiza omrežij;računalništvo in informatika;magisteriji;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UL FRI - Faculty of Computer and Information Science
Publisher: [Ž. Kokelj]
UDC: 004:336.74(043.2)
COBISS: 89826563 Link will open in a new window
Views: 243
Downloads: 42
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Comparison of tainting analysis methods in Bitcoin network
Secondary abstract: Bitcoin offers many new opportunities and challenges with its pseudonymity and open source nature. One of the challenges is performing taint analysis in order to follow coins that originated from criminal activities. Due to a large number of nodes and the complexity of the Bitcoin transaction graph, methods for the performance of taint analysis have been developed. In this master’s thesis, existing methods were implemented and furthermore a new method called COMB was proposed. A database that supports running these methods was put together. For the testing purpose, two data sets of starting transaction outputs were prepared. After executing all methods on the data sets and analysis of the results, it was concluded that all methods have pros and cons. The intersections of graphs produced by different algorithms from the same starting inputs were analyzed, because they contain transactions with a higher probability of being connected to the starting transaction out- put. Another database with off-chain data that can be used in implemented methods was developed. Even with a relatively small database, we were able to reach some known transactions with implemented methods, showing the big potential of this technique.
Secondary keywords: Bitcoin;blockchain;network analysis;computer science;computer and information science;master's degree;Verige blokov (zbirke podatkov);Digitalna valuta;Računalništvo;Univerzitetna in visokošolska dela;
Type (COBISS): Master's thesis/paper
Study programme: 1000471
Thesis comment: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Pages: 80 str.
ID: 14075168