magistrsko delo
Jaka Zaplotnik (Author), Miha Ravnik (Mentor)

Abstract

Tri elastične konstante, ki pripadajo trem osnovnim deformacijam orientacijske ureditve molekul nematskega tekočega kristala (pahljačasti, zvojni in upogibni), določajo ravnovesno ureditev in relaksacijsko dinamiko iz neravnovesnega stanja. V magistrskem delu razvijemo novo metodo določanja elastičnih konstant nematskih tekočih kristalov na osnovi kombinacije mezoskopskega numeričnega modeliranja in strojnega učenja nevronskih mrež. Elastične konstante določimo tako, da približno 10⁵-krat z minimizacijo Frank-Oseenove elastične proste energije simuliramo relaksacijo tekočega kristala z naključnimi elastičnimi konstantami iz poljubne začetne konfiguracije direktorja v ravnovesno stanje. Hkrati z uporabo Jonesovega matričnega formalizma izračunavamo intenziteto skozi vzorec prepuščene monokromatske svetlobe. Tako dobljene časovne odvisnosti intenzitete in pripadajoče elastične konstante uporabimo kot učno množico za učenje nevronske mreže, s katero aproksimiramo netrivialno funkcijo, ki iz časovne odvisnosti intenzitete svetlobe napoveduje elastične konstante. V magistrskem delu pokažemo, katere od konstant lahko določimo v značilnih tipih tekočekristalnih celic. Predstavimo še, kako nevronsko mrežo, naučeno s podatki, ki so pridobljeni z numeričnimi simulacijami, lahko uporabimo tudi za napovedovanje elastičnih konstant iz eksperimentalno izmerjenih podatkov. Naše delo prispeva k razvoju uporabe metod strojnega učenja v fiziki mehkih snovi kot novemu močnemu metodološkemu pristopu, posebej v povezavi med modeliranjem in eksperimenti.

Keywords

strojno učenje;nematski tekoči kristali;nevronske mreže;elastične konstante;Frank-Oseenova prosta energija;numerične simulacije;optika;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UL FMF - Faculty of Mathematics and Physics
Publisher: [J. Zaplotnik]
UDC: 538.9
COBISS: 75969283 Link will open in a new window
Views: 291
Downloads: 91
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Determining Elastic Constants of Nematic Liquid Crystals Using Neural Networks
Secondary abstract: In a nematic liquid crystal, three elastic constants related to three deformation modes of the orientational order (splay, twist and bend) govern the orientational configuration in the equilibrium, as well as the leading relaxational dynamics. In this MSc thesis, a new method for determining elastic constants of nematic liquid crystals is developed based on the combination of mesoscopic continuum modelling and neural networks. First, the relaxation from a random initial state of the nematic liquid crystal to the minimum free energy state is numerically simulated 10⁵ times, using Frank-Oseen free energy minimisation for random values of elastic constants. Simultaneously, the transmittance of the nematic sample for monochromatic polarized light is calculated using the Jones matrix formalism. The obtained time-dependent light transmittances and the corresponding elastic constants form a training data set, based on which a neural network is trained, aiming to approximate a nontrivial function that predicts the unknown elastic constants from the time dependence of the intensity of the transmitted light. This allows us to show which elastic constants can be determined in different types of liquid crystal cells and nematic geometries. In addition, we demonstrate that the neural network, which is originally trained on numerically obtained data, can also be used to determine elastic constants from experimentally measured data. Overall, this work contributes towards the development of machine learning methods in the field of general soft matter, as the new strong methodological tools, allowing us to combine theoretical modelling and experimental approaches.
Secondary keywords: machine learning;nematic liquid crystals;neural networks;elactic constants;Frank-Oseen free energy;numerical simulations;optics;
Type (COBISS): Master's thesis/paper
Study programme: 0
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za fiziko
Pages: 64 str.
ID: 14249380