Ademir Hujdurović (Author), Klavdija Kutnar (Author), Dragan Marušič (Author)

Abstract

Avtomorfizem grafa se imenuje sod/lih, če deluje na množici vozlišč kot soda/liha permutacija. V tem članku zastavimo problem določitve tistih točkovno-tranzitivnih grafov, ki premorejo lihe avtomorfizme. Predstavimo delne rezultate za določene razrede točkovno-tranzitivnih grafov, med drugim za Cayleyjeve grafe. Kot posledico teh rezultatov dobimo karakterizacijo ločno-tranzitivnih cirkulantov brez lihih avtomorfizmov.

Keywords

graph;vertex-transitive;automorphism group;even permutation;odd permutation;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UP - University of Primorska
UDC: 519.17
COBISS: 1538542276 Link will open in a new window
ISSN: 1855-3966
Parent publication: Ars mathematica contemporanea
Views: 2033
Downloads: 100
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Lihi avtomorfizmi v točkovno-tranzitivnih grafih
Secondary abstract: An automorphism of a graph is said to be even/odd if it acts on the set of vertices as an even/odd permutation. In this article we pose the problem of determining which vertex-transitive graphs admit odd automorphisms. Partial results for certain classes of vertex-transitive graphs, in particular for Cayley graphs, are given. As a consequence, a characterization of arc-transitive circulants without odd automorphisms is obtained.
Type (COBISS): Not categorized
Pages: str. 427-437
Volume: ǂVol. ǂ10
Issue: ǂno. ǂ2
Chronology: 2016
ID: 14363595
Recommended works:
, no subtitle data available
, Combinatorics Seminar, Ohio State University, Columbus, Ohio, USA, 27. October 2010
, no subtitle data available