Shao Fei Du (Author), Klavdija Kutnar (Author), Dragan Marušič (Author)

Abstract

Članek prinaša napredek pri dolgo odprti Lovászevi domnevi o hamiltonskosti vozliščno tranzitivnih grafov. V članku je dokazano, da vsak povezan vozliščno tranzitiven graf, katerega red je produkt dveh praštevil, ki izhaja iz grupnega delovanja specialne projektivne linearne grupe PSL▫$(2, q^2)$▫ na odsekih po njeni podgrupi izomorfni splošni projektivni linearni grupi PGL▫$(2, q)$▫, premore hamiltonski cikel.

Keywords

točkovno tranzitiven graf;hamiltonski cikel;grupa avtomorfizmov;orbitalni graf;vertex-transitive graph;Hamilton cycle;automorphism group;orbital graph;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UP - University of Primorska
UDC: 519.17
COBISS: 22957571 Link will open in a new window
ISSN: 1855-3966
Views: 1205
Downloads: 46
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary abstract: A step forward is made in a long standing Lovász problem regarding hamiltonicity of vertex-transitive graphs by showing that every connected vertex-transitive graph of order a product of two primes arising from the group action of the projective special linear group PSL▫$(2, q^2)$▫ on cosets of its subgroup isomorphic to the projective general linear group PGL▫$(2, q)$▫ contains a Hamilton cycle.
Secondary keywords: točkovno tranzitiven graf;hamiltonski cikel;grupa avtomorfizmov;orbitalni graf;
Pages: str. 1-15
Volume: ǂVol. ǂ19
Issue: ǂno. ǂ1
Chronology: 2020
DOI: 10.26493/1855-3974.2163.5df
ID: 14372930