delo diplomskega seminarja
Patrik Mikuž (Author), Jan Grošelj (Mentor)

Abstract

V delu je predstavljena diskretna valčna transformacija in njena uporaba pri analizi podatkov. Transformacija zaporedje podatkov z uporabo filtrov razdeli na dva dela, pri čemer se ohrani en del, drugi del pa je potreben le pri rekonstrukciji zaporedja. Ta postopek je opisan z Laurentovimi polinomi in Evklidovim algoritmom za Laurentove polinome. Vpeljan je pogoj popolne rekonstrukcije, ki zagotavlja, da je transformacija obrnljiv postopek. Predstavljen je v matrični obliki z uvedbo polifaznih komponent in polifaznih matrik filtrov. Na koncu je predstavljen še konkreten primer uporabe diskretne valčne transformacije na primeru grupiranja telemetričnih podatkov.

Keywords

matematika;diskretna valčna transformacija;Laurentovi polinomi;Evklidov algoritem;pogoj popolne rekonstrukcije;polifazna predstavitev;grupiranje;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FMF - Faculty of Mathematics and Physics
Publisher: [P. Mikuž]
UDC: 519.6
COBISS: 97687299 Link will open in a new window
Views: 893
Downloads: 107
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Use of discrete wavelet transform in telemetry data analysis
Secondary abstract: In this thesis, the definition of discrete wavelet transform as well as its use in the data analysis field is presented. The transform works in a way that, with the use of filters, it divides a sequence of data into two parts: one part is kept for later use and the other, the second part, is used for reconstruction purposes only. This procedure is described by Laurent polynomials and Euclidean algorithm for Laurent polynomials. Furthermore the condition of perfect reconstruction, which ensures that the discrete wavelet transform is a reversible process, is introduced. The condition is represented in a matrix form, with the introduction of polyphase representation and polyphase matrix of filters. Finally, the use of discrete wavelet transform is demonstrated on an actual example of clustering of telemetry data.
Secondary keywords: mathematics;discrete wavelet transform;Laurent polynomials;Euclidean algorithm;perfect reconstruction condition;polyphase representation;clustering;
Type (COBISS): Final seminar paper
Study programme: 0
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja
Pages: 38 str.
ID: 14398373
Recommended works: