Primož Potočnik (Author), Martin Misson (Author), Roman Šturm (Author), Edvard Govekar (Author), Tomaž Kek (Author)

Abstract

Characterization of acoustic emission (AE) signals in loaded materials can reveal structural damage and consequently provide early warnings about product failures. Therefore, extraction of the most informative features from AE signals is an important part of the characterization process. This study considers the characterization of AE signals obtained from bending experiments for carbon fiber epoxy (CFE) and glass fiber epoxy (GFE) composites. The research is focused on the recognition of material structure (CFE or GFE) based on the analysis of AE signals. We propose the extraction of deep features using a convolutional autoencoder (CAE). The deep features are compared with extracted standard AE features. Then, the different feature sets are analyzed through decision trees and discriminant analysis, combined with feature selection, to estimate the predictive potential of various feature sets. Results show that the application of deep features increases recognition accuracy. By using only standard AE-based features, a classification accuracy of around 80% is obtained, and adding deep features improves the classification accuracy to above 90%. Consequently, the application of deep feature extraction is encouraged for the characterization of loaded CFE composites.

Keywords

polimerni kompoziti;akustična emisija;konvolucijski autoenkoderji;izpeljava značilk;globoke značilke;polymer composites;acoustic emission;feature extraction;convolutional autoencoders;deep features;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FS - Faculty of Mechanical Engineering
UDC: 620.179.17:678
COBISS: 97798403 Link will open in a new window
ISSN: 2076-3417
Views: 132
Downloads: 47
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary keywords: polimerni kompoziti;akustična emisija;konvolucijski avtoenkoderji;izpeljava značilk;globoke značilke;
Type (COBISS): Article
Pages: str. 1-13
Volume: ǂVol. ǂ12
Issue: ǂiss. ǂ4
Chronology: Feb. 2022
DOI: 10.3390/app12041867
ID: 14554085
Recommended works:
, magistrsko delo magistrskega študijskega programa II. stopnje Strojništvo
, zaključna naloga Univerzitetnega študijskega programa I. stopnje Strojništvo - Razvojno raziskovalni program
, zaključna naloga univerzitetnega študijskega programa I. stopnje Strojništvo