magistrsko delo
Anja Leskovšek (Author), Mihael Perman (Mentor)

Abstract

Obratne stohastične diferencialne enačbe so poseben tip stohastičnih diferencialnih enačb, pri katerih imamo dano končno vrednost, ki se uporabljajo v finančnih modelih, ekonomskih problemih, stohastični kontroli, stohastičnih diferencialnih igrah itd. V tem delu si bomo pogledali, pod katerimi pogoji obstaja enolična rešitev za obratne stohastične diferencialne enačbe in nekaj primerov iz financ. Nato bomo definirali stohastično kontrolo ter dve glavni metodi, s katerima jo lahko rešujemo: dinamično programiranje ter Pontrjaginov stohastični princip maksimuma. Na koncu si bomo pogledali povezavo med obratnimi stohastičnimi diferencialnimi enačbami in stohastično kontrolo.

Keywords

obratne stohastične diferencialne enačbe;stohastična kontrola;Hamiltonian sistema;dinamično programiranje;Pontrjaginov stohastični princip maksimuma;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UL FMF - Faculty of Mathematics and Physics
Publisher: [A. Leskovšek Kunc]
UDC: 519.2
COBISS: 98100483 Link will open in a new window
Views: 983
Downloads: 81
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Backward stochastic differential equations
Secondary abstract: Backward stochastic differential equations are a special type of stochastic differential equations, in which the terminal value is already given, that are used in financial models, economic problems, stochastic control, stochastic differential games, etc. In this thesis we are going to look at the conditions under which there is a unique solution for the backward stochastic differential equations and some examples from finance. Then we will define stochastic control and two main methods with which we can solve it. These methods are dynamic programming and Pontryagin stochastic maximum principle. At the end, we will take a look at the connection between backward stochastic differential equations and stochastic control.
Secondary keywords: backward stochastic differential equations;stochastic control;the Hamiltonian of the system;dynamic programming;Pontryagin stochastic maximum principle;
Type (COBISS): Master's thesis/paper
Study programme: 0
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 2. stopnja
Pages: V, 62 str.
ID: 14570393
Recommended works: