Abstract

We classify all cross-sections of Green's relations ▫$\mathcal{L}$▫ and ▫$\mathcal{R}$▫ in the Brauer semigroup. The regular behavior of such cross-sections starts from ▫$n=7$▫. We show that in the regular case there are essentially two different cross-sections and all others are ▫$\mathcal{S}_n$▫-conjugated to one of these two. We also classify all cross-sections up to isomorphism.

Keywords

matematika;algebra;polgrupe transformacij;prečni prerezi;Brauerjeva polgrupa;Greenove relacije;ekvivalence;mathematics;semigroups of transformations;cross-sections;Brauer semigroups;Green relations;equivalences;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UNG - University of Nova Gorica
UDC: 512.534
COBISS: 874235 Link will open in a new window
ISSN: 0037-1912
Views: 4487
Downloads: 151
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Unknown
Secondary keywords: mathematics;algebra;semigroups of transformations;cross-sections;Brauer semigroups;Green relations;equivalences;
URN: URN:SI:UNG
Type (COBISS): Not categorized
Pages: str. 223-248
Volume: ǂVol. ǂ72
Issue: ǂno. ǂ2
Chronology: 2006
Keywords (UDC): mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika;algebra;algebra;
DOI: 10.1007/s00233-005-0511-3
ID: 1471755
Recommended works:
, no subtitle data available
, no subtitle data available
, no subtitle data available
, Visiting Assistant Professor, 1.10.-31.12.2008, Ohio State University, Columbus, Ohio, USA