Janez Žerovnik (Author)

Abstract

The problem of determining the chromatic numbers of the strong product of cycles is considered. A construction is given proving ▫$\chi(G) = 2^p + 1$▫ for a product of ▫$p$▫ odd cycles of lengths at least ▫$2^p + 1$▫. Several consequences are discussed. In particular it is proved that the strong product of ▫$p$▫ factors has chromatic number at most ▫$2^p + 1$▫ provided that each factor admits the homomorphism to sufficiently long odd cycle ▫$C_{m_i}, \; m_i \ge 2^p + 1$▫.

Keywords

matematika;teorija grafov;krepki produkt grafov;kromatično število;lih cikel;minimalna neodvisna dominantna množica;mathematics;graph theory;strong product;chromatic number;odd cycle;minimal independent dominating set;

Data

Language: English
Year of publishing:
Typology: 1.08 - Published Scientific Conference Contribution
Organization: UM FS - Faculty of Mechanical Engineering
UDC: 519.174
COBISS: 13825113 Link will open in a new window
ISSN: 1571-0653
Views: 52
Downloads: 37
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Kromatično število krepkega produkta lihih ciklov
Secondary keywords: matematika;teorija grafov;krepki produkt grafov;kromatično število;lih cikel;minimalna neodvisna dominantna množica;
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 647-652
Issue: ǂVol. ǂ11
Chronology: July 2002
ID: 1472586