Language: | English |
---|---|
Year of publishing: | 2007 |
Typology: | 1.01 - Original Scientific Article |
Organization: | UP - University of Primorska |
UDC: | 519.17 |
COBISS: | 14181465 |
ISSN: | 0012-365X |
Views: | 3875 |
Downloads: | 37 |
Average score: | 0 (0 votes) |
Metadata: |
Secondary language: | Slovenian |
---|---|
Secondary title: | O dvodelnih Q-polinomskih razdaljno regularnih grafih s presečnim številom 1 |
Secondary abstract: | Let ▫$\Gamma$▫ denote a bipartite ▫$Q$▫-polynomial distance-regular graph with diameter ▫$d \ge 3$▫, valency ▫$k \ge 3$▫ and intersection number ▫$c_2=1$▫. We show that ▫$\Gamma$▫ has a certain equitable partition of its vertex set which involves ▫$4d-4$▫ cells. We use this partition to show that the intersection numbers of ▫$\Gamma$▫ satisfy the following divisibility conditions: (I) ▫$c_{i+1}-1$▫ divides ▫$c_i(c_i-1)$▫ for ▫$2 \le i \le d-1$▫, and (II) ▫$b_{i-1}-1$▫ divides ▫$b_i(b_i-1)$▫ for ▫$1 \le i \le d-1$▫. Using these divisibility conditions we show that ▫$\Gamma$▫ does not exist if ▫$d=4$▫. |
Secondary keywords: | matematika;teorija grafov;razdaljno regularni grafi;▫$Q$▫-polinomska lastnost;ekvitabilne particije; |
Type (COBISS): | Not categorized |
Pages: | str. 544-553 |
Volume: | ǂVol. ǂ307 |
Issue: | ǂiss. ǂ3-5 |
Chronology: | 2007 |
DOI: | 10.1016/j.disc.2005.09.044 |
ID: | 1472912 |