Dalibor Fronček (Author), Janja Jerebic (Author), Sandi Klavžar (Author), Petr Kovář (Author)

Abstract

Krepka izometrična dimenzija grafa ▫$G$▫ je najmanjše število ▫$k$▫, tako da lahko ▫$G$▫ izometrično vložimo v krepki produkt ▫$k$▫ poti. Z uporabo Spernerjevega izreka je določena krepka izometrična dimenzija Hammingovih grafov ▫$K_2\,{\square}\, K_n$▫.

Keywords

matematika;teorija grafov;krepka izometrična dimenzija;Hammingovi grafi;mathematics;graf theory;strong product;Hamming graphs;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 519.17
COBISS: 14286425 Link will open in a new window
ISSN: 0963-5483
Views: 36
Downloads: 31
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Krepka izometrična dimenzija, dvoklično pokrivanje in Spernerjev izrek
Secondary abstract: The strong isometric dimension of a graph ▫$G$▫ is the least number ▫$k$▫ such that ▫$G$▫ isometrically embeds into the strong product of ▫$k$▫ paths. Using Sperner's theorem, the strong isometric dimension of the Hamming graphs ▫$K_2\,{\square}\, K_n$▫ is determined.
Secondary keywords: matematika;teorija grafov;krepka izometrična dimenzija;Hammingovi grafi;
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 271-275
Volume: ǂVol. ǂ16
Issue: ǂiss. ǂ2
Chronology: 2007
ID: 1473062