Abstract
Dokazana je zgornja meja za dominantno število direktnega produkta grafov. V posebnem primeru iz meje sledi, da za poljubna grafa ▫$G$▫ in ▫$H$▫ velja ▫$\gamma (G \times H) \le 3\gamma(G)\gamma(H)$▫. Konstruirani so grafi s poljubno velikimi dominantnimi števili, za katere je ta meja dosežena. Za gornje dominantno število dokažemo, da velja ▫$\Gamma(G \times H) \ge \Gamma(G)\Gamma(H)$▫, s čimer je potrjena domneva iz [R. Nowakowski, D.F. Rall, Associative graph products and their independence, domination and coloring numbers, Discuss. Math. Graph Theory 16 (1996) 53-79]. Nazadnje za dominacijo v parih direktnih produktov dokažemo, da za poljubna grafa ▫$G$▫ in ▫$H$▫ velja ▫$\gamma_{\rm{pr}}(G \times H) \le \gamma_{\rm{pr}} (G)\gamma_{\rm{pr}}(H)$▫. Predstavimo tudi neskončne družine grafov, pri katerih je ta meja dosežena.
Keywords
matematika;teorija grafov;dominacija;dominacija v parih;gornja dominacija;kartezični produkt grafov;mathematics;graph theory;domination;paired-domination;upper domination;direct product;
Data
| Language: |
English |
| Year of publishing: |
2007 |
| Typology: |
1.01 - Original Scientific Article |
| Organization: |
UM FNM - Faculty of Natural Sciences and Mathematics |
| UDC: |
519.17 |
| COBISS: |
14286937
|
| ISSN: |
0012-365X |
| Views: |
37 |
| Downloads: |
22 |
| Average score: |
0 (0 votes) |
| Metadata: |
|
Other data
| Secondary language: |
Slovenian |
| Secondary title: |
Dominiranje direktnih produktov grafov |
| Secondary abstract: |
An upper bound for the domination number of the direct product of graphs is proved. It in particular implies that for any graphs ▫$G$▫ and ▫$H$▫, ▫$\gamma (G \times H) \le 3\gamma(G)\gamma(H)$▫. Graphs with arbitrarily large domination numbers are constructed for which this bound is attained. Concerning the upper domination number we prove that ▫$\Gamma(G \times H) \ge \Gamma(G)\Gamma(H)$▫, thus confirming a conjecture from [R. Nowakowski, D.F. Rall, Associative graph products and their independence, domination and coloring numbers, Discuss. Math. Graph Theory 16 (1996) 53-79]. Finally, for paired-domination of direct products we prove that ▫$\gamma_{\rm{pr}}(G \times H) \le \gamma_{\rm{pr}}(G)\gamma_{\rm{pr}}(H)$▫ for arbitrary graphs ▫$G$▫ and ▫$H$▫, and also present some infinite families of graphs that attain this bound. |
| Secondary keywords: |
matematika;teorija grafov;dominacija;dominacija v parih;gornja dominacija;kartezični produkt grafov; |
| URN: |
URN:SI:UM: |
| Type (COBISS): |
Not categorized |
| Pages: |
str. 1636-1642 |
| Volume: |
ǂVol. ǂ307 |
| Issue: |
ǂiss. ǂ13 |
| Chronology: |
2007 |
| ID: |
1473063 |