Sergio Cabello (Author)

Abstract

We show how to compute in ▫$O(n^{4/3} \log^{1/3} n + n^{2/3}k^{2/3} \log n)$▫ time the distance between $k$ given pairs of vertices of a planar graph $G$ with ▫$n$▫ vertices. This improves previous results whenever ▫$(n/\log n)^{5/6} \le k \le n^2/\log^6 n$▫. As an application, we speed up previous algorithms for computing the dilation of geometric planar graphs.

Keywords

matematika;teorija grafov;ravninski graf;razdalja;mathematics;graph theory;planar graph;distance;

Data

Language: English
Year of publishing:
Typology: 0 - Not set
Organization: UM FNM - Faculty of Natural Sciences and Mathematics
UDC: 519.17
COBISS: 15142233 Link will open in a new window
ISSN: 1318-4865
Views: 33
Downloads: 7
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary keywords: matematika;teorija grafov;ravninski graf;razdalja;
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 1-18
Volume: ǂVol. ǂ47
Issue: ǂšt. ǂ1089
Chronology: 2009
ID: 1474262