Language: | English |
---|---|
Year of publishing: | 2009 |
Typology: | 1.01 - Original Scientific Article |
Organization: | UL FS - Faculty of Mechanical Engineering |
UDC: | 519.17 |
COBISS: | 15145817 |
ISSN: | 0195-6698 |
Views: | 43 |
Downloads: | 26 |
Average score: | 0 (0 votes) |
Metadata: |
Secondary language: | Slovenian |
---|---|
Secondary title: | Povezavni okvarni premer kartezičnih svežnjev |
Secondary abstract: | A Cartesian graph bundle is a generalization of a graph covering and a Cartesian graph product. Let ▫$G$▫ be a ▫$k_G$▫-edge connected graph and ▫${\bar{\mathcal{D}}_c(G)}$▫ be the largest diameter of subgraphs of ▫$G$▫ obtained by deleting ▫$c < k_G$▫ edges. We prove that ▫${\bar{\mathcal{D}}_{a+b+1}(G)} \le {\bar{\mathcal{D}}_a(F)} \le {\bar{\mathcal{D}}_b(B)} + 1$▫ if ▫$G$▫ is a graph bundle with fibre ▫$F$▫ over base $B$, ▫$a < k_F$▫, and ▫$b<k_B$▫. As an auxiliary result we prove that the edge-connectivity of graph bundle ▫$G$▫ is at least ▫$k_F + k_B$▫. |
Secondary keywords: | matematika;teorija grafov;kartezični grafovski produkti;kartezični grafovski svežnji;povezavni okvarni premer; |
URN: | URN:SI:UM: |
Type (COBISS): | Not categorized |
Pages: | str. 1054-1061 |
Volume: | ǂVol. ǂ30 |
Issue: | ǂno. ǂ5 |
Chronology: | 2009 |
ID: | 1474266 |