Abstract
Naj bo ▫$M_n$▫, ▫$n \geqslant 2$▫, algebra vseh ▫$n \times n$▫ matrik nad poljem ▫$F$▫ karakteristike različne od 2, in naj bo ▫$\Phi$▫ bilinearna preslikava iz ▫$M_n \times M_n$▫ v poljubni vektorski prostor ▫$X$▫ nad ▫$F$▫. Glavni izrek pove,da je iz pogoja, da je ▫$\phi(e, f ) = 0$▫ za vse ortogonalne idempotente ▫$e$▫ in ▫$f$▫ ranga 1 sledi eksistenca linearnih takih preslikav ▫$\Phi_1,\Phi_2 \colon M_n \to X$▫, da je ▫$\phi(a,b) = \Phi_1(ab) + \Phi_2(ba)$▫ za vse ▫$a,b \in M_n$▫. Izrek se uporabi pri študiju nekaterih problemov o linearnih ohranjevalcih.
Keywords
matematika;teorija matrik;matrična algebra;ničelni produkt;idempotent ranga 1;linearna preslikava;bilinearna preslikava;linearni ohranjevalci;mathematics;matrix theory;matrix algebra;zero product;rank one idempotent;linear map;bilinear map;linear preserver problem;
Data
Language: |
English |
Year of publishing: |
2009 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UM FNM - Faculty of Natural Sciences and Mathematics |
UDC: |
512.643 |
COBISS: |
15331161
|
ISSN: |
0024-3795 |
Views: |
977 |
Downloads: |
85 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Unknown |
Secondary abstract: |
Let ▫$M_n$▫, ▫$n \geqslant 2$▫, be the algebra of all ▫$n \times n$▫ matrices over afield ▫$F$▫ of characteristic not 2, and let ▫$\Phi$▫ be a bilinear map from ▫$M_n \times M_n$▫ into an arbitrary vector space ▫$X$▫ over ▫$F$▫. Our main result states that if ▫$\phi(e, f ) = 0$▫ whenever ▫$e$▫ and ▫$f$▫ are orthogonal rank one idempotents, then there exist linear maps ▫$\Phi_1,\Phi_2 \colon M_n \to X$▫ such that ▫$\phi(a,b) = \Phi_1(ab) + \Phi_2(ba)$▫ for all ▫$a,b \in M_n$▫. This is applicable to some linear preserver problems. |
Secondary keywords: |
matematika;teorija matrik;matrična algebra;ničelni produkt;idempotent ranga 1;linearna preslikava;bilinearna preslikava;linearni ohranjevalci; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Not categorized |
Pages: |
str. 738-743 |
Volume: |
ǂVol. ǂ432 |
Issue: |
ǂiss. ǂ2-3 |
Chronology: |
2009 |
ID: |
1474520 |