Abstract
Za krepki produkt ▫$G_1 \boxtimes G_2$▫ grafov ▫$G_1$▫ in ▫$G_2$▫ dokažemo, da je ▫${\mathbb{Z}}_3$▫-pretočno kontraktibilen natanko tedaj, ko ▫$G_1 \boxtimes G_2$▫ ni izomorfen ▫$T\boxtimes K_2$▫ (kar poimenujemo ▫$K_4$▫-drevo), kjer je ▫$T$▫ drevo. Sledi, da za ▫$G_1 \boxtimes G_2$▫ obstaja NZ 3-pretok, razen če je ▫$G_1 \boxtimes G_2$▫ ▫$K_4$▫-drevo. Dokaz je konstruktiven in implicira polinomski algoritem, ki nam vrne NZ 3-pretok, če ▫$G_1 \boxtimes G_2$▫ ni ▫$K_4$▫-drevo, oziroma NZ 4-pretok sicer.
Keywords
matematika;teorija grafov;celoštevilski pretoki;krepki produkt;poti;cikli;nikjer ničelni pretok;mathematics;graph theory;integer flows;strong product;paths;cycles;
Data
Language: |
English |
Year of publishing: |
2010 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UM FS - Faculty of Mechanical Engineering |
UDC: |
519.17 |
COBISS: |
15616089
|
ISSN: |
0364-9024 |
Views: |
282 |
Downloads: |
28 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Unknown |
Secondary title: |
NZ-pretoki v krepkem produktu grafov |
Secondary abstract: |
We prove that the strong product ▫$G_1 \boxtimes G_2$▫ of ▫$G_1$▫ and ▫$G_2$▫ is ▫${\mathbb Z}_3$▫-flow contractible if and only if ▫$G_1 \boxtimes G_2$▫ is not ▫$T \boxtimes K_2$▫, where ▫$T$▫ is a tree (we call ▫$T \boxtimes K_2$▫ a ▫$K_4$▫-tree). It follows that ▫$G_1 \boxtimes G_2$▫ admits an NZ 3-flow unless ▫$G_1 \boxtimes G_2$▫ is a ▫$K_4$▫-tree. We also give a constructive proof that yields a polynomial algorithm whose output is an NZ 3-flow if ▫$G_1 \boxtimes G_2$▫ is not a ▫$K_4$▫-tree, and an NZ 4-flow otherwise. |
Secondary keywords: |
matematika;teorija grafov;celoštevilski pretoki;krepki produkt;poti;cikli;nikjer ničelni pretok; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Not categorized |
Pages: |
str. 267-276 |
Volume: |
Vol. 64 |
Issue: |
iss. 4 |
Chronology: |
2010 |
ID: |
1475137 |