Wilfried Imrich (Author), Iztok Peterin (Author), Simon Špacapan (Author), Cun-Quan Zhang (Author)

Abstract

Za krepki produkt ▫$G_1 \boxtimes G_2$▫ grafov ▫$G_1$▫ in ▫$G_2$▫ dokažemo, da je ▫${\mathbb{Z}}_3$▫-pretočno kontraktibilen natanko tedaj, ko ▫$G_1 \boxtimes G_2$▫ ni izomorfen ▫$T\boxtimes K_2$▫ (kar poimenujemo ▫$K_4$▫-drevo), kjer je ▫$T$▫ drevo. Sledi, da za ▫$G_1 \boxtimes G_2$▫ obstaja NZ 3-pretok, razen če je ▫$G_1 \boxtimes G_2$▫ ▫$K_4$▫-drevo. Dokaz je konstruktiven in implicira polinomski algoritem, ki nam vrne NZ 3-pretok, če ▫$G_1 \boxtimes G_2$▫ ni ▫$K_4$▫-drevo, oziroma NZ 4-pretok sicer.

Keywords

matematika;teorija grafov;celoštevilski pretoki;krepki produkt;poti;cikli;nikjer ničelni pretok;mathematics;graph theory;integer flows;strong product;paths;cycles;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FS - Faculty of Mechanical Engineering
UDC: 519.17
COBISS: 15616089 Link will open in a new window
ISSN: 0364-9024
Views: 282
Downloads: 28
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Unknown
Secondary title: NZ-pretoki v krepkem produktu grafov
Secondary abstract: We prove that the strong product ▫$G_1 \boxtimes G_2$▫ of ▫$G_1$▫ and ▫$G_2$▫ is ▫${\mathbb Z}_3$▫-flow contractible if and only if ▫$G_1 \boxtimes G_2$▫ is not ▫$T \boxtimes K_2$▫, where ▫$T$▫ is a tree (we call ▫$T \boxtimes K_2$▫ a ▫$K_4$▫-tree). It follows that ▫$G_1 \boxtimes G_2$▫ admits an NZ 3-flow unless ▫$G_1 \boxtimes G_2$▫ is a ▫$K_4$▫-tree. We also give a constructive proof that yields a polynomial algorithm whose output is an NZ 3-flow if ▫$G_1 \boxtimes G_2$▫ is not a ▫$K_4$▫-tree, and an NZ 4-flow otherwise.
Secondary keywords: matematika;teorija grafov;celoštevilski pretoki;krepki produkt;poti;cikli;nikjer ničelni pretok;
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 267-276
Volume: Vol. 64
Issue: iss. 4
Chronology: 2010
ID: 1475137
Recommended works:
, no subtitle data available
, no subtitle data available
, no subtitle data available
, no subtitle data available