Abstract
Problem prepoznavanja grafov pokritij-neprimerljivosti (to je grafov, ki jih dobimo iz delno urejenih množic kot povezavno unijo njihovega grafa pokritij in grafa neprimerljivosti) je NP-poln v splošnem, kot so dokazali v [J. Maxová, P. Pavlíkova, A. Turzík, On the complexity of cover-incomparability graphs of posets, Order 26 (2009) 229-236], medtem ko je na primer očitno polinomski v razredu dreves. V tem članku se osredotočimo na razrede tetivnih grafov in dokažemo, da je vsak graf pokritij-neprimerljivosti, ki je tetiven graf, kar graf intervalov. Okarakteriziramo tiste delno urejene množice, ki imajo za graf pokritij-neprimerljivosti bločni graf, oziroma razcepljeni graf in tudi okarakteriziramo grafe pokritij-neprimerljivosti med bločnimi, oziroma razcepljenimi grafi. Slednji karakterizaciji dasta tudi linearen algoritem za prepoznavanje bločnih, oziroma razcepljenih grafov, ki so grafi pokritij-neprimerljivosti.
Keywords
matematika;teorija grafov;delno urejena množica;temeljni graf;tetiven graf;razcepljen graf;bločni graf;mathematics;graph theory;poset;underlying graph;chordal graph;split graf;block graph;
Data
Language: |
English |
Year of publishing: |
2010 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
UDC: |
519.17 |
COBISS: |
15656537
|
ISSN: |
0166-218X |
Views: |
38 |
Downloads: |
14 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Unknown |
Secondary title: |
Grafi pokritij-neprimerljivosti in tetivni grafi |
Secondary abstract: |
The problem of recognizing cover-incomparability graphs (i.e. the graphs obtained from posets as the edge-union of their covering and incomparability graph) was shown to be NP-complete in general [J. Maxová, P. Pavlíkova, A. Turzík, On the complexity of cover-incomparability graphs of posets, Order 26 (2009) 229-236], while it is for instance clearly polynomial within trees. In this paper we concentrate on (classes of) chordal graphs, and show that any cover-incomparability graph that is a chordal graph is an interval graph. We characterize the posets whose cover-incomparability graph is a block graph, and a split graph, respectively, and also characterize the cover-incomparability graphs among block and split graphs, respectively. The latter characterizations yield linear time algorithms for the recognition of block and split graphs, respectively, that are cover-incomparability graphs. |
URN: |
URN:SI:UM: |
Type (COBISS): |
Not categorized |
Pages: |
str. 1752-1759 |
Volume: |
Vol. 158 |
Issue: |
iss. 16 |
Chronology: |
2010 |
ID: |
1475206 |