Abstract

The smallest tree that contains all vertices of a subset ▫$W$▫ of ▫$V(G)$▫ is called a Steiner tree. The number of edges of such a tree is the Steiner distance of ▫$W$▫ and union of all Steiner trees of ▫$W$▫ form a Steiner interval. Both of them are described for the lexicographic product in the present work. We also give a complete answer for the following invariants with respect to the Steiner convexity: the Steiner number, the rank, the hull number, and the Carathéodory number, and a partial answer for the Radon number. At the end we locate and repair a small mistake from [J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, On the geodetic and the hull numbers in strong product graphs, Comput. Math. Appl. 60 (2010) 3020--3031].

Keywords

teorija grafov;leksikografski produkt;Steinerjeva konveksnost;Steinerjeva množica;Steinerjeva razdalja;graph theory;lexicographic product;Steiner convexity;Steiner set;Steiner distance;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FERI - Faculty of Electrical Engineering and Computer Science
UDC: 519.17
COBISS: 16322393 Link will open in a new window
ISSN: 2232-2094
Parent publication: Preprint series
Views: 326
Downloads: 29
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary keywords: teorija grafov;leksikografski produkt;Steinerjeva konveksnost;Steinerjeva množica;Steinerjeva razdalja;
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 1-15
Volume: Vol. 50
Issue: št. 1179
Chronology: 2012
ID: 1476609
Recommended works:
, no subtitle data available
, no subtitle data available