Abstract
The smallest tree that contains all vertices of a subset ▫$W$▫ of ▫$V(G)$▫ is called a Steiner tree. The number of edges of such a tree is the Steiner distance of ▫$W$▫ and union of all Steiner trees of ▫$W$▫ form a Steiner interval. Both of them are described for the lexicographic product in the present work. We also give a complete answer for the following invariants with respect to the Steiner convexity: the Steiner number, the rank, the hull number, and the Carathéodory number, and a partial answer for the Radon number. At the end we locate and repair a small mistake from [J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, On the geodetic and the hull numbers in strong product graphs, Comput. Math. Appl. 60 (2010) 3020--3031].
Keywords
teorija grafov;leksikografski produkt;Steinerjeva konveksnost;Steinerjeva množica;Steinerjeva razdalja;graph theory;lexicographic product;Steiner convexity;Steiner set;Steiner distance;
Data
| Language: |
English |
| Year of publishing: |
2012 |
| Typology: |
1.01 - Original Scientific Article |
| Organization: |
UM FERI - Faculty of Electrical Engineering and Computer Science |
| UDC: |
519.17 |
| COBISS: |
16322393
|
| ISSN: |
2232-2094 |
| Parent publication: |
Preprint series
|
| Views: |
326 |
| Downloads: |
29 |
| Average score: |
0 (0 votes) |
| Metadata: |
|
Other data
| Secondary language: |
English |
| Secondary keywords: |
teorija grafov;leksikografski produkt;Steinerjeva konveksnost;Steinerjeva množica;Steinerjeva razdalja; |
| URN: |
URN:SI:UM: |
| Type (COBISS): |
Not categorized |
| Pages: |
str. 1-15 |
| Volume: |
Vol. 50 |
| Issue: |
št. 1179 |
| Chronology: |
2012 |
| ID: |
1476609 |