Iztok Peterin (Author)

Abstract

Obravnavamo intervale in konveksne množice krepkega produkta. Vozlišča poljubnega intervala iz ▫$G \boxtimes H$▫ so klasificirana z najkrajšimi potmi v enem faktorju in s sprehodi v dugem rahlo modificiranem faktorju. Konveksne množice krepkega produkta so karakterizirane s konveksnostjo obeh projekcij in še tremi lokalnimi lastnostmi, med katerimi je tudi 2-konveksnost.

Keywords

teorija grafov;krepki produkt;geodetska konveksnost;interval;graph theory;strong product;geodesic convexity;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FERI - Faculty of Electrical Engineering and Computer Science
UDC: 519.17
COBISS: 16626265 Link will open in a new window
ISSN: 0911-0119
Views: 32
Downloads: 4
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Intervali in konveksne množice v krepkem produktu grafov
Secondary abstract: In this note we consider intervals and convex sets of strong product. Vertices of an arbitrary interval of ▫$G \boxtimes H$▫ are classified with shortest path properties of one factor and a walk properties of a slightly modified second factor. The convex sets of the strong product are characterized by convexity of projections to both factors and three other local properties, one of them being 2-convexity.
Secondary keywords: teorija grafov;krepki produkt;geodetska konveksnost;interval;
Type (COBISS): Not categorized
Pages: str. 705-714
Volume: Vol. 29
Issue: iss. 3
Chronology: 2013
ID: 1476835
Recommended works:
, no subtitle data available
, no subtitle data available
, no subtitle data available