Nina Peršin (Author), Joso Vukman (Author)

Abstract

The purpose of this paper is to prove the following result. Let ▫$m \ge 1$▫, ▫$n \ge 1$▫ be some fixed integers and let ▫$R$▫ be a prime ring with ▫$\text{char}(R)= 0$▫ or ▫$(m+n)^2 < \text{char}(R)$▫. Suppose there exists an additive mapping ▫$T \colon R \to R$▫ satisfying the relation ▫$2(m+n)^2T(x^3) = m(2m+n)T(x)x^2 + 2mnxT(x)x + n(2n+m)x^2T(x)$▫ for all ▫$x \in R$▫. In this case ▫$T$▫ is a two-sided centralizer.

Keywords

matematika;algebra;kolobar;prakolobar;polprakolobar;Banachov prostor;Hilbertov prostor;algebra vseh omejenih linearnih operatorjev;standardna operatorska algebra;odvajanje;jordansko odvajanje;centralizator;ring;prime ring;semiprime ring;Banach space;Hilbert space;algebra of all bounded linear operators;standard operator algebra;derivation;Jordan derivation;left (right) centralizer;two-sided centralizer;left (right) Jordan centralizer;(m,n)-Jordan centralizer;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FNM - Faculty of Natural Sciences and Mathematics
UDC: 517.986
COBISS: 19107848 Link will open in a new window
ISSN: 0017-095X
Views: 377
Downloads: 38
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 119-132
Volume: Vol. 47
Issue: no. 1
Chronology: 2012
ID: 1477043