Klavdija Kutnar (Author), Primož Šparl (Author)

Abstract

It is shown that every connected vertex-transitive graph of order ▫$6p$▫, where ▫$p$▫ is a prime, contains a Hamilton path. Moreover, it is shown that, except for the truncation of the Petersen graph, every connected vertex-transitive graph of order ▫$6p$▫ which is not genuinely imprimitive contains a Hamilton cycle.

Keywords

teorija grafov;tranzitivnost;Hamiltonov cikel;Hamiltonova pot;grupa avtomorfizmov;graph theory;vertex-transitive;Hamilton cycle;Hamilton path;automorphism group;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 519.17
COBISS: 1024053332 Link will open in a new window
ISSN: 0012-365X
Views: 3272
Downloads: 39
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary keywords: teorija grafov;tranzitivnost;Hamiltonov cikel;Hamiltonova pot;grupa avtomorfizmov;
Type (COBISS): Not categorized
Pages: str. 5444-5460
Volume: ǂVol. ǂ309
Issue: ǂiss. ǂ17
Chronology: 2009
DOI: 10.1016/j.disc.2008.12.005
ID: 1477154