István Kovács (Author), Klavdija Kutnar (Author), Dragan Marušič (Author)

Abstract

Given natural numbers ▫$n \ge 3$▫ and ▫$1 \le a$▫, ▫$r \le n-1$▫, the rose window graph ▫$R_n(a,r)$▫ is a quartic graph with vertex set ▫$\{x_i \vert i \in {\mathbb Z}_n\} \cup \{y_i \vert i \in {\mathbb Z}_n\}$▫ and edge set ▫$\{\{x_i, x_{i+1}\} \vert i \in {\mathbb Z}_n\} \cup \{\{y_i, y_{i+r}\} \vert i \in {\mathbb Z}_n\} \cup \{\{x_i, y_i\} \vert i \in {\mathbb Z}_n\} \cup \{\{x_{i+a}, y_i\} \vert i \in {\mathbb Z}_n\}$▫. In this article a complete classification of edge-transitive rose window graphs is given, thus solving one of three open problems about these graphs posed by Steve Wilson in 2001.

Keywords

group;graph;rose window;vertex-transitive;edge-transitive;arc-transitive;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UP - University of Primorska
UDC: 519.17
COBISS: 1024189012 Link will open in a new window
ISSN: 0364-9024
Views: 2841
Downloads: 92
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Type (COBISS): Not categorized
Pages: str. 216-231
Volume: ǂVol. ǂ65
Issue: ǂno. ǂ3
Chronology: 2010
DOI: 10.1002/jgt.20475
ID: 1477159
Recommended works:
, no subtitle data available
, Group Theory Seminar, 21.5.2008, Ohio State University, Columbus, Ohio, USA
, no subtitle data available
, drugo učno gradivo
, no subtitle data available