Abstract
Naj bo ▫$X$▫ povezan nenormalen 4-valenten ločno-tranzitiven Cayleyev graf diedrske grupe ▫$D_n$▫, tako da je ▫$X$▫ dvodelen in ustrezna biparticija vozlišč ustreza dvema orbitama ciklične podgrupe znotraj ▫$D_n$▫. Dokazano je, da je tedaj ▫$X$▫ izomorfen bodisi leksikografskemu produktu ▫$C_n[2K_1]$▫ za ▫$n \geq 4$▫ sodo, bodisi enemu od petih posebnih grafov na 10, 14, 26, 28 oz. 30 vozliščih.
Keywords
Cayleyjev graf;ločna tranzitivnost;diedrska grupa;Cayley graph;arc transitivity;dihedral group;
Data
| Language: |
English |
| Year of publishing: |
2010 |
| Typology: |
1.01 - Original Scientific Article |
| Organization: |
UL PEF - Faculty of Education |
| UDC: |
519.17 |
| COBISS: |
1024270932
|
| ISSN: |
1439-8516 |
| Views: |
760 |
| Downloads: |
287 |
| Average score: |
0 (0 votes) |
| Metadata: |
|
Other data
| Secondary language: |
English |
| Secondary abstract: |
Let ▫$X$▫ be a connected non-normal 4-valent arc-transitive Cayley graph on a dihedral group ▫$D_n$▫ such that ▫$X$▫ is bipartite, with the two bipartition sets being the two orbits of the cyclic subgroup within ▫$D_n$▫. It is shown that ▫$X$▫ is isomorphic either to the lexicographic product ▫$C_n[2K_1]$▫ with ▫$n \geq 4$▫ even, or to one of the five sporadic graphs on 10, 14, 26, 28 and 30 vertices, respectively. |
| Secondary keywords: |
Cayleyjev graf;ločna tranzitivnost;diedrska grupa; |
| Type (COBISS): |
Not categorized |
| Pages: |
str. 1485-1498 |
| Volume: |
ǂVol. ǂ26 |
| Issue: |
ǂno. ǂ8 |
| Chronology: |
2010 |
| DOI: |
10.1007/s10114-010-8271-8 |
| ID: |
1477165 |