bachelor's thesis
Drejc Pesjak (Author), Zoran Bosnić (Mentor), Marko Robnik Šikonja (Co-mentor)

Abstract

There is plenty of hate speech on the web, which is additionally enabled by the possibility to remain anonymous, and many forums as well as news websites are trying to fight against it with a large number of moderators that remove hateful comments. Due to large numbers of daily comments they use automated hate speech detection software. We propose a DPhate system, which outputs an unhateful alternative to the posted hateful comment. The system uses a series of pre-trained paraphrasing models, that generate nonhateful sentences. The automatic evaluation has shown that in 84.37% of cases at least one acceptable sentence is generated, whereas only 67.90% of rephrasals were deemed acceptable by human evaluators.

Keywords

hate speech;natural language processing;transformers;BERT models;machine learning;paraphrasing;computer and information science;diploma thesis;

Data

Language: English
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FRI - Faculty of Computer and Information Science
Publisher: [D. Pesjak]
UDC: 004.8:81'322.2(043.2)
COBISS: 102617091 Link will open in a new window
Views: 127
Downloads: 72
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Parafraziranje sovražnega govora
Secondary abstract: Splet je poln sovražnega govora, ki ga dodatno spodbuja možnost anonimnosti. Mnogi forumi in novičarske spletne strani se branijo z moderatorji, ki odstranijo škodljive komentarje. Ker je po navadi komentarjev veliko (več deset tisoč na dan), si moderatorji pomagajo s programi za avtomatsko zaznavanje sovražnega govora. V svoji diplomski nalogi predlagamo nov sistem DPhate, ki uporabniku ob objavi sovražnega komentarja predlaga nesovražno alternativo z ohranjenim pomenom. V sistemu uporabimo več prednaučenih modelov, ki s parafraziranjem generirajo nesovražne povedi. Avtomatska evalvacija je pokazala, da se v 84.37% generira vsaj en primeren stavek, medtem ko so generirane parafraze človeški evalvatorji ocenili za primerne v 67.90%.
Secondary keywords: transformerji;modeli BERT;parafraziranje;računalništvo in informatika;univerzitetni študij;diplomske naloge;Sovražni govor;Obdelava naravnega jezika (računalništvo);Računalniško jezikoslovje;Strojno učenje;Računalništvo;Univerzitetna in visokošolska dela;
Type (COBISS): Bachelor thesis/paper
Study programme: 1000468
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Pages: 32 str.
ID: 14808612
Recommended works:
, bachelor's thesis
, Slovenian Natural Language Processing Benchmark