magistrsko delo
Abstract
Ob koncu 19. stoletja je Otto Hölder zastavil enega pomembnejših problemov na področju teorije grup, kamor sodi tudi to magistrsko delo. Del problema je predstavljala klasifikacija končnih enostavnih grup. To so grupe, ki ne premorejo nobene prave netrivialne podgrupe edinke. Pri reševanju Hölderjevega problema je sodelovalo veliko število matematikov, ki so z iskanjem vseh ustreznih grup zaključili šele skoraj stoletje kasneje. Magistrsko delo je osredotočeno na precej majhen del omenjene klasifikacije. Želimo poiskati vse končne enostavne grupe do reda največ 200. Iz Lagrangeovega in Cauchyjevega izreka neposredno sledi, da so vse grupe praštevilskih redov enostavne, ne obstaja pa nobena druga komutativna enostavna grupa. Poiskati torej želimo še vse nekomutativne končne enostavne grupe do reda največ 200. V magistrskem delu sta v ta namen najprej navedeni trditvi, s pomočjo katerih izločimo grupe, katerih redi so določenih oblik. Takšnih redov je vključno s praštevilskimi kar 189. Omenjeni trditvi dokažemo z uporabo nekaterih pomembnih strukturnih rezultatov s področja teorije grup (npr. izreki Sylowa, Cauchyjev in Lagrangeov izrek, delovanja grup), ustrezne rede pa poiščemo z uporabo programa MAGMA.V magistrskem delu je podan tudi prikaz, kako uporaben je takšen pristop pri izločanju grup višjih redov, saj so morali matematiki za klasifikacijo vseh enostavnih grup končnega reda uporabiti še mnoge precej kompleksnejše izreke in trditve. Po uporabi prej omenjenih trditev, s pomočjo katerih izločimo skoraj vse rede do največ 200, ostane še 11 redov. Devet izmed njih lahko izločimo neposredno z uporabo prej omenjenih strukturnih rezultatov in nekaj premisleka, pri čemer pa moramo obravnavati vsak red posebej. Na koncu se izkaže, da obstajata natanko dve končni nekomutativni enostavni grupi reda največ 200. To sta grupi A5 reda 60 in PSL(2, 7) reda 168, ki spadata v dve pomembni neskončni družini grup in sicer alternirajočih grup An in projektivnih posebnih linearnih grup PSL(n, q), izmed katerih so skoraj vse grupe enostavne. Magistrsko delo vsebuje dokaz, da sta omenjeni grupi res enostavni. Prav tako je podan dokaz, da je alternirajoča grupa A5 edina takšna grupa reda 60 in posledično najmanjša nekomutativna enostavna grupa.
Keywords
enostavne grupe;podgrupa edinka;red grupe;klasifikacija enostavnih grup;izreki Sylowa;
Data
Language: |
Slovenian |
Year of publishing: |
2022 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UL PEF - Faculty of Education |
Publisher: |
[P. Podboj] |
UDC: |
512.34(043.2) |
COBISS: |
105458691
|
Views: |
0 |
Downloads: |
0 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Classification of finite simple groups of small order |
Secondary abstract: |
At the end of the 19th century Otto Hölder proposed one of the most important problems in group theory, the mathematical field this master’s thesis belongs to. Part of the problem represents the classification of finite simple groups. Finite simple groups are finite nontrivial groups whose only normal subgroups are the trivial group and the group itself. There were many mathematicians that participated in solving Hölder’s problem which was finally resolved almost a century later. This master’s thesis focuses on a small part of the mentioned classification. We want to find all finite simple groups of order no more than 200. All groups of prime order are simple. It turns out that those are also the only commutative simple groups, which follows directly from Lagrange and Cauchy theorems. Therefore, we want to find all noncommutative finite simple groups of order no more than 200. The most important step in achieving this goal in this master’s thesis are two propositions that help us eliminate orders of special forms. Together with all primes there are 189 orders of such form. We prove those propositions using some important structural results from group theory (e.g. Sylow theorems, Cauchy and Lagrange theorems, group actions) and we then determine the corresponding orders using the MAGMA software. To find all finite simple groups, mathematicians have been using many more complex results. That is why this master’s thesis also demonstrates the usefulness of the two propositions we used for eliminating higher orders. After eliminating most of the 200 orders by using the mentioned propositions, there are only 11 orders left. We show that there are no finite simple groups for 9 of those orders by using the above results and some additional arguments. It turns out that there are exactly two noncommutative finite simple groups of order no more than 200. These groups are A5 of order 60 and PSL(2, 7) of order 168. They are part of two very important infinite families of groups, the alternating groups An and the projective special linear groups PSL(n, q), most of which are simple groups. In the master’s thesis we prove the simplicity of the mentioned two groups. We also prove that the group A5 is the only simple group of order 60 and is therefore the smallest noncommutative finite simple group. |
Secondary keywords: |
Matematika;Algebra;Teorija grup;Univerzitetna in visokošolska dela; |
File type: |
application/pdf |
Type (COBISS): |
Master's thesis/paper |
Thesis comment: |
Univ. v Ljubljani, Pedagoška fak., Poučevanje, Predmetno poučevanje |
Pages: |
iii, 66 str. |
ID: |
15097506 |