doktorska disertacija
Abstract
Za mikrofluidne naprave štejemo tiste pretočne naprave, ki se uporabljajo v kemiji
oziroma kemijski proizvodnji, katerih vsaj ena dimenzija je manjša od enega
milimetra. Zaradi te lastnosti je za njih značilno visoko razmerje med površino in
volumnom, katerega posledica so boljša energijska učinkovitost, izboljšan nadzor
procesa, izboljšan prenos toplote in snovi, ter zaradi njihovega majhnega volumna,
manjša poraba topil. Modeliranje služi v kemijskem inženirstvu kot orodje za boljše
razumevanje procesov, pomoč pri dimenzioniranju naprav in optimizaciji procesov ter
kot pomoč pri vodenju procesov. Tradicionalni postopki modeliranja se v naši panogi
praviloma poslužujejo makroskopskih metod, ki slonijo na predpostavki kontinuuma,
torej zanemarjajo delčno sestavo snovi. Majhne karakteristične dimenzije
mikrofluidnih naprav postavljajo upravičenost uporabe makroskopskih modelov pod
vprašaj. Mezoskopska mrežna Boltzmannova metoda ima potencial za modeliranje
mikrofluidnih naprav, saj z njenim statistično-mehanskim izvorom ne zanemarja
delčne sestave snovi, hkrati pa je primerna za opis mehanike fluidov in transportnih
pojavov tudi v kompleksnih geometrijah. Mrežno Boltzmannovo metodo je smiselno
razširiti v večnivojski model, da na ta način omilimo porabo računalniške moči —
tako uporabimo mrežno Boltzmannovo metodo za opis procesov v kompleksnih
geometrijah, preprostejša področja mikrofluidne naprave pa opišemo z
makroskopskim modelom. V tej nalogi predstavljamo naše delo z mrežno
Boltzmannovo metodo. Najprej jo uporabimo za opis prenosa snovi v
mikrobioreaktorju s strnjenim slojem sferičnih delcev. Nadaljujemo s primerjavo
različnih modelov trka mrežne Boltzmannove metode in z uporabo mrežne
Boltzmannove metode za modeliranje toka binarne mešanice med seboj netopnih
fluidov, s pomočjo katerega teoretično načrtujemo brezmembranski mikroločevalnik.
Na koncu mrežno Boltzmannovo metodo razširimo še v večnivojski model za opis
reaktivne mešanice plinov v katalizirani reakciji suhega reforminga metana.
Keywords
mikroreaktorji;fluidi;večnivojsko modeliranje;mrežna Boltzmannova metoda;numerični eksperimenti;doktorske disertacije;
Data
Language: |
Slovenian |
Year of publishing: |
2022 |
Typology: |
2.08 - Doctoral Dissertation |
Organization: |
UL FKKT - Faculty of Chemistry and Chemical Technology |
Publisher: |
[F. Strniša] |
UDC: |
66.02(043.3) |
COBISS: |
108519683
|
Views: |
152 |
Downloads: |
33 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Multiscale modelling of chemical and biochemical processes in microfluidic devices |
Secondary abstract: |
Flow devices used in chemistry and chemical manufacturing, that have at least one
dimension smaller than a millimeter, may be characterized as microfluidic devices.
Among characteristics that arise from this property are: high area-to-volume ratio,
better efficiency, improved process control, improved heat and mass transport, and
due to their small volume, reduced solvent use. Chemical engineers use modelling to
gain better understanding of a process, as a tool in process scaling and optimization,
and even for process control. In our field we traditionally use continuum-based
models to describe processes. These models inherently neglect the particle
composition of matter. It is due to microfluidic devices’ small characteristic size that
the continuum assumption may not be valid when modelling them. The lattice
Boltzmann method has a lot of potential for modelling of microfluidic devices as with
its statistical-mechanics background it does not fully neglect the particle composition
of matter, and it may be used to model fluid mechanics, and transport phenomena
even in complex geometries. Due to it not being computationally very cheap it is
desired to use the lattice Boltzmann method in a multiscale model setup, where it
serves to solve transport phenomena in complex geometries, and the rest of the
microfluidic device is modelled with a simpler macroscopic method. In this
dissertation we present our work with the lattice Boltzmann method. First we use it to
model mass transport in a packed-bed microbioreactor with randomly packed
spherical particles. This is followed up by a study in which we compare different
lattice Boltzmann collision models, and a study where we theoretically design a
membrane-free microseparator by simulating the flow of a binary mixture of
immiscible fluids. Finally, we expand the lattice Boltzmann method to a multiscale
model of dry-reforming of methane in a catalytic reactor. |
Secondary keywords: |
multiscale modelling;lattice Boltzmann method;microfluidic devices;microreactors;Mikrofluidne naprave;Univerzitetna in visokošolska dela; |
Type (COBISS): |
Doctoral dissertation |
Study programme: |
1000381 |
Thesis comment: |
Univ. v Ljubljani, Fak. za kemijo in kemijsko tehnologijo |
Pages: |
XVI, 126 str. |
ID: |
15357987 |