doktorska disertacija
Abstract
Dobro razumevanje interakcij med zdravilnimi učinkovinami in pomožnimi snovmi, do katerih lahko pride med izdelavo ali shranjevanjem zdravila, je ključnega pomena za uspešen razvoj zdravila. Zelo pogoste so interakcije zdravilnih učinkovin z reaktivnimi nečistotami iz pomožnih snovi. Prisotnost reaktivnih nečistot v zdravilih lahko izvira iz procesa izdelave pomožne snovi ali pa je, kot v primeru makrogola 6000, posledica razpada pomožne snovi. Pri razpadu nastali nizkomolekularni aldehidi in organske kisline so problematični predvsem za nizko odmerne zdravilne učinkovine, ki vsebujejo aminsko funkcionalno skupino. Dejavniki, ki vplivajo na hitrost razpada makrogola v trdnih farmacevtskih oblikah, niso v celoti pojasnjeni, kar pripisujemo predvsem dvema razlogoma. Prvi je pomanjkanje poskusov mehanističnega razumevanja razpadnih reakcij v trdnih farmacevtskih oblikah, drugi pa odsotnost primernih metod za testiranje kompatibilnosti. Na primeru zdravilne učinkovine saksagliptin (vsebuje primarno aminsko funkcionalno skupino), ki se zaradi boljše stabilnosti nahaja v tabletni filmski oblogi, smo izvedli celovito stabilnostno testiranje končne farmacevtske oblike. Z minimalnim variiranjem deleža mehčala makrogola 6000 smo dosegli različne porazdelitve razpadnih produktov saksagliptina. S pomočjo statistične evalvacije, kvantnomehanskih izračunov in modeliranja kinetike kemijskih reakcij smo uspeli razložiti in povezati razpad pomožne snovi in zdravilne učinkovine. Ugotovili smo, da poleg koncentracije reaktantov in okoljskih dejavnikov, kot sta temperatura in relativna vlaga, na nastanek razpadnih produktov vpliva predvsem mikro-okoljski pH. Nastanek kislih organskih spojin, ki so posledica razpada makrogola, upočasnjuje glavno razpadno pot saksagliptina - intramolekularno ciklizacijo z nadaljnjo epimerizacijo. Nasprotno velja za paralelno reakcijo N-formiliranja, v kateri prihaja do nastanka N-metanoatne nečistote saksagliptina, ki pa je kislinsko katalizirana. Z regresijo določeni kinetični parametri nam poleg razumevanja mehanizma razpada omogočajo tudi napovedovanje koncentracij posameznih razpadnih produktov v odvisnosti od temperature, relativne vlage in tabletne sestave po času. Pridobljena spoznanja so omogočila razvoj stabilne končne farmacevtske oblike, kar smo še dodatno potrdili s testiranjem stabilnosti na nivoju enostavnih dvokomponentnih zmesi. Drugi razlog za pomanjkljivo razumevanje interakcij zdravilnih učinkovin, ki vsebujejo aminsko funkcionalno skupino, z reaktivnimi nečistotami v pomožnih snoveh je odsotnost primernih metod za testiranje kompatibilnosti. Oksidacijske reakcije nastanka metanala in metanojske kisline ter posledične reakcije N-metiliranja in N-formiliranja zdravilnih učinkovin spadajo med tiste, ki jih s standardnimi metodami Izvleček II testiranja kompatibilnosti težko napovedujemo. Pogoji, katerim sta pomožna snov in zdravilna učinkovina pri standardnih testiranjih izpostavljeni, se namreč razlikujejo od tistih v končnih farmacevtskih oblikah. Predlagamo nov način testiranja kompatibilnosti, ki je hiter, enostaven in sloni na dejanskih razmerjih sestavin zdravila. Pri testiranju paroksetina, zdravilne učinkovine, ki vsebuje sekundarno aminsko funkcionalno skupino, smo s predlagano metodo dosegli primerljive nivoje razpadnih produktov kot pri predhodno testiranih tabletah. Široko uporabnost predlaganega načina stresnega testiranja smo potrdili s testiranjem večjega števila zdravilnih učinkovin z aminskimi skupinami, pri čemer smo poleg celokupne reaktivnosti aminske skupine za reakcije tega tipa ocenjevali tudi nagnjenost zdravilne učinkovine k N-metiliranju oziroma N-formiliranju. S pomočjo simulacij na osnovi postavljenega kinetičnega modela smo razložili tudi vpliv železovega oksida na hitrost razpada makrogola 6000.
Keywords
pomožne snovi;saksagliptin;testiranja;SAXA študije;
Data
Language: |
Slovenian |
Year of publishing: |
2020 |
Typology: |
2.08 - Doctoral Dissertation |
Organization: |
UL FFA - Faculty of Pharmacy |
Publisher: |
[B. Robnik] |
UDC: |
615.45:615.45(043.3) |
COBISS: |
32346371
|
Views: |
136 |
Downloads: |
1 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Study of products of reactions of active ingredients comprising amine group and reactive impurities present in excipients |
Secondary abstract: |
Good understanding of the interactions between drug stubstances and excipients, that may occur during the manufacture or storage of a drug product, is crucial for successful development of a drug product. Very common are interactions of drug substances with reactive impurities from excipients. Reactive impurities presence in drug products may result from the manufacturing process of the excipient or, as in the case of polyethylene glycol 6000, from degradation of the excipient. Low molecular weight aldehydes and organic acids formed during degradation are especially problematic for low dose drug substances that contain amine functional groups. Factors influencing the rate of polyethylene glycol degradation in solid dosage forms are not fully elucidated, which we attribute mainly to two reasons. First one being the lack of attempts at mechanistic understanding of degradation reactions in solid dosage forms and second the lack of appropriate methods for compatibility testing. In the case of primary amine functionality containing drug substance saxagliptin, which is for its better stability present in the tablet film coating, we performed a comprehensive stability testing of the final dosage form. With minimal variation in the proportion of plasticizer polyethylene glycol 6000, different distribution of saxagliptin degradation products was achieved. Using statistical methods, quantum mechanical calculations and modeling of the kinetics of chemical reactions, we were able to explain and link the degradation of the excipient and the drug substance. We established that in addition to the concentration of reactants and environmental factors such as temperature and relative humidity, the distribution of degradation products is mainly influenced by micro-environmental pH. Formation of acidic organic compounds resulting from the degradation of polyethylene glycol slows down the main degradation pathway of saxagliptin % intramolecular cyclization with further epimerization. In contrast, parallel N-formylation reaction in which N-formyl saxagliptin impurity is formed, is acid catalyzed. In addition to understanding the mechanism of degradation, the kinetic parameters determined by regression enable us to predict the concentrations of individual degradation products as a function of temperature, relative humidity and tablet composition over time. The findings led to the development of a stable final dosage form, which was further supported by stability testing of simple binary mixtures. Second reason for the deficient understanding of the interactions of amine functionality containing drug substances and reactive impurities from accidents is the lack of appropriate methods for compatibility testing. Oxidation reactions resulting in methanal and methanoic acid formation and consequent reactions of N- Abstract IV methylation and N-formylation of drug substances are among those that are difficult to predict by standard compatibility testing methods. The conditions to which the excipient and the drug substance are exposed during standard testing differ from those in the final dosage forms. We propose a new approach to compatibility testing that is fast, simple, and based on the actual proportions of the components in the drug product. Proposed method was used to test the secondary amine functionality containing drug substance paroxetine and was able to produce comparable levels of degradation products as in the original tablet formulation. The wide applicability of the proposed stress testing method was confirmed through testing of larger number of amine drug substances, whereby in addition to the overall reactivity of the amine group to this type of reactions, their tendency to N-methylation or N-formylation was also assessed. The influence of iron oxide on polyethylene glycol degradation rate was also explained using simulations based on the constructed kinetic model. |
Secondary keywords: |
Zdravilne učinkovine;Zdravila;Farmacevtske oblike; |
Type (COBISS): |
Dissertation |
Thesis comment: |
Univ. v Ljubljani, Fak. za farmacijo |
Pages: |
XVI, 136 str. |
ID: |
15504138 |