delo diplomskega seminarja
Abstract
V diplomski nalogi podrobneje spoznamo Möbiusovo funkcijo na delno urejenih množicah in izrek o Möbiusovi inverziji - pomembno orodje za invertiranje določenih funkcijskih vsot in s tem za preštevanje elementov. Möbiusova funkcija ima nekatere zanimive lastnosti, ki nam pomagajo izračunati njen predpis, posebej zanimiva pa je na mrežah. To si v delu pogledamo tako v splošnem kot na konkretnih primerih. Izkaže se, da je Möbiusova inverzija na množici naravnih števil z relacijo deljivosti klasična Möbiusova inverzija iz teorije števil, medtem ko nam njena aplikacija na potenčni množici končne množice omogoča dokaz načela vključitev in izključitev. S pomočjo Möbiusove funckije lahko definiramo Eulerjevo karakteristiko delno urejene množice, kar povežemo s topološkim pojmom Eulerjeve karakteristike. Podrobneje si pogledamo tudi Whitneyjeva števila in njihovo povezavo z Möbiusovo funkcijo. Na množici razdelitev končne množice jih lahko obravnavamo v luči Stirlingovih števil, do katerih lahko pridemo s pomočjo Möbiusove inverzije.
Keywords
matematika;Möbiusova funkcija;Möbiusova inverzija;delno urejene množice;mreže;stopničaste delno urejene množice;
Data
Language: |
Slovenian |
Year of publishing: |
2022 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
Publisher: |
[Š. Ačko] |
UDC: |
519.1 |
COBISS: |
118716931
|
Views: |
423 |
Downloads: |
48 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Möbius inversion |
Secondary abstract: |
We study the Möbius function and the Möbius inversion theorem on posets. The latter is an important tool in inverting certain types of sums and with that a useful way of enumerating. The Möbius function has interesting characteristics that make computing it much easier. It is particularly fascinating on lattices. We study both the theory and applications on a few cases of lattices. We find that the Möbius inversion on natural numbers with the divisibility ordering gives us none other than the classical Möbius inversion from number theory. On the other hand, we can use its application on the power set to prove the very important inclusion--exclusion principle. The Möbius function can be used to define the Euler characteristic of a poset, which we then connect to the usual topological concept.
In the work we also study Whitney numbers, their connection to the Möbius function and how we can view them in light of Stirling numbers, if we apply them to the set of all partitions of a finite set. Using the Möbius inversion, we also give a representation of Stirling numbers with the Möbius function. |
Secondary keywords: |
mathematics;Möbius function;Möbius inversion;posets;lattices;semimodular posets; |
Type (COBISS): |
Final seminar paper |
Study programme: |
0 |
Thesis comment: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja |
Pages: |
34 str. |
ID: |
16234453 |