delo diplomskega seminarja
Abstract
Opcije z vrzeljo so primer eksotičnih opcij, katerih izplačilo je odvisno od sprožilne in izvršilne cene. Sprožilna cena nam pove, ali bo imela opcija z vrzeljo neničelno izplačilo, višina izplačila pa je odvisna od izvršilne cene in cene osnovnega premoženja. To izplačilo je lahko tudi negativno. Opcije z vrzeljo delimo na nakupne in prodajne ter evropske in ameriške. Premije evropskih opcij ob določenem času lahko izračunamo z Black-Scholesovo formulo za opcije z vrzeljo. Seveda moramo za uporabo te formule poznati vse zahtevane parametre trga. Povezavo med premijama nakupne in prodajne opcije z vrzeljo nam pove pariteta nakupnih in prodajnih opcij z vrzeljo. Za evropske opcije z vrzeljo lahko s parcialnim odvajanjem Black-Scholesove formule po parametrih trga izpeljemo tudi grške parametre. Z njihovo pomočjo lahko sestavimo portfelj, katerega vrednost se bo čim manj spreminjala ob spreminjanju izbranega parametra trga.
Keywords
finančna matematika;volatilnost;opcije z vrzeljo;izvršilna cena;sprožilna cena;nakupne/prodajne opcije;Black-Scholesova formula;pariteta nakupnih in prodajnih opcij;grški parametri;
Data
Language: |
Slovenian |
Year of publishing: |
2022 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL EF - Faculty of Economics |
Publisher: |
[G. Potočnik] |
UDC: |
519.8 |
COBISS: |
119538947
|
Views: |
500 |
Downloads: |
38 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Gap options |
Secondary abstract: |
Gap options are an example of exotic options. Their payoff depends on trigger price and strike price. The trigger price determines whether the gap option will have a nonzero payoff. The amount of payoff however depends on the strike price and the price of the underlying asset. The payoff can also be negative. Gap options are divided into gap call options and gap put options and they can be European or American. We can calculate the premium of a European gap option using the Black-Scholes formula for gap options. In order to use this formula, we must however know all market parameters. The relation between the premiums of the gap call option and the gap put option is known as put-call parity for gap call and put options. For European gap options, we can also calculate their Greeks as partial derivatives of the Black-Scholes formula with respect to market parameters. They can help us create a portfolio, with a value that is less susceptible to the changes of some market parameters. |
Secondary keywords: |
gap options;strike price;trigger price;call/put options;Black-Scholes formula;put-call parity;the Greeks; |
Type (COBISS): |
Final seminar paper |
Study programme: |
0 |
Thesis comment: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja |
Pages: |
27 str. |
ID: |
16306603 |