diplomsko delo
Abstract
Diplomska naloga raziskuje problem parkiranja avtomobila v simulatorju s
pomoˇcjo algoritma spodbujevanega uˇcenja DDPG. V nalogi se spoznamo
s teoretiˇcno podlago spodbujevanega uˇcenja in nevronskih mreˇz ter si bolj
podobno pogledamo algoritem DDPG. Glede na pridobljeno znanje implementiramo agenta, ki parkira na praznem parkiriˇsˇcu. Primerjamo, kako se
razliˇcne arhitekture nevronske mreˇze obnesejo na problemu in kako globina
in ˇsirina mreˇze vplivata na rezultate. Primerjamo jih na podlagi odstotka
uspeˇsnih parkiranj, povpreˇcnega ˇstevila korakov za uspeˇsno parkiranje in
poti, ki jih avtomobil opravi med parkiranjem.
Najbolj uspeˇsna arhitektura je problem parkiranja in nakljuˇcne toˇcke reˇsila
100-odstotno v povpreˇcno 20 korakih. To arhitekturo smo testiral ˇse na
poligonih z ovirami, ki so predstavljali postopno teˇzje oblike ˇcelnega, vzvratnega in boˇcnega parkiranja. Rezultati so obetavni in ponujajo moˇznost za
nadaljnje raziskovanje.
Keywords
spodbujevano učenje;DDPG;parkiranje avtomobila;univerzitetni študij;diplomske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2022 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FRI - Faculty of Computer and Information Science |
Publisher: |
[T. Rozmanič] |
UDC: |
004.94:004.8(043.2) |
COBISS: |
121854467
|
Views: |
22 |
Downloads: |
6 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Learning to park a car in a simulator using DDPG algorithm |
Secondary abstract: |
The thesis explores the problem of parking inside a simulator with the help of
a reinforcement learning algorithm DDPG. We get familiar with the theoretical background of reinforcement learning, neural networks, and an in-depth
knowledge of DDPG. Based on our knowledge we implement an agent capable of parking in an empty parking lot. We compare different neural network
architectures and how changing the depth and width affect the results. We
compare the results based on the percentage of successful episodes, the average steps necessary for a successful episode, and the paths the car made
during parking.
The most successful architecture solved the problem of parking from a random starting point 100% and in on average 20 steps. We then tested this
architecture on courses with obstacles that represented gradually harder degrees of difficulty for perpendicular, reverse and parallel parking. The results are promising and offer room for further research and development |
Secondary keywords: |
reinfocment learning;DDPG;neural network;deep learning;computer science;diploma;Avtomobilski simulatorji vožnje;Globoko učenje (strojno učenje);Nevronske mreže (računalništvo);Računalništvo;Univerzitetna in visokošolska dela; |
Type (COBISS): |
Bachelor thesis/paper |
Study programme: |
1000468 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
Pages: |
50 str. |
ID: |
16391554 |