diplomsko delo
Abstract
V diplomski nalogi se lotimo naloge vodenja kvadrokopterja skozi poligon obročev,
ki imajo na spodnji strani nameščeno ArUco značko.
Prvi korak je modeliranje gibanja letanika s prenosnimi funkcijami, posamezno
za vsako prostorno stopnjo premika. S pomočjo Strejčeve metode identificiramo
prenosne funkcije in prilagodimo parametre tako, da se ujemajo s posnetim signalom odziva realnega sistmea pri vzbujanju s stopničastim vhodnim signalom. Na
osnovi dokončanih modelov izberemo vrsto regulatorja ter ga načrtamo, spet, za
vsak premik posamezno. V nadaljevanju analiziramo stabilnost zaprtozančnega
sistema s pomočjo Nyqustiovega in Bodejevega diagrama in prilagodimo konstante regulatorja tako, da je model robustno stabilen. Ko imamo vse parametre
regulatorja, regulator implementiramo v programsko kodo in poskus izvedemo na
letalniku. V teku poskusa snemamo izhodne signale, da jih lahko primerjamo s
simuliranimi.
Keywords
vodenje;brezpilotni letalniki;kamere;regulatorji;stabilnost;univerzitetni študij;Elektrotehnika;diplomske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2022 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FE - Faculty of Electrical Engineering |
Publisher: |
[E. Mujić] |
UDC: |
681.5:629.7.014.9(043.2) |
COBISS: |
121081603
|
Views: |
32 |
Downloads: |
13 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Control of an unmaned aerial vehicle using a camera |
Secondary abstract: |
In the thesis we address the problem of controlling a quad-copter trough a polygon
of rings witch have an ArUco marker on the bottom.
The first step is to model drone’s movements with transfer functions for each
degree of freedom individually. With the use of Strejc method we identify transfer functions and adjust parameters in such a way that the signals of the models
match recorded output of a real system when the input is a step function signal.
On the basis of finished models we pick a controller and construct it, once again,
for each degree of freedom individually. In continuation, we analyze stability
with Nyquist and Bode diagrams and adjust controller constants so the model is
robustly stable. Once we have all controller parameters, the controller is implemented in the code and the experiment is done on the real drone. During the
experiment, we record all output signals so we can compare them to simulated
ones. |
Secondary keywords: |
control;unmanned areal vehicle;camera;controller;stability; |
Type (COBISS): |
Bachelor thesis/paper |
Study programme: |
1000313 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za elektrotehniko |
Pages: |
XIV, 46 str. |
ID: |
16411136 |