diplomsko delo
Abstract
Večina celičnih proteinov je oligomerov. Oligomerni proteini imajo namreč manjšo
topilu dostopno površino kot monomeri, s tem pa se poveča njihova stabilnost. Hkrati
lahko z oligomerizacijo zvišamo lokalno koncentracijo aktivnih mest in tako izboljšamo
aktivnost encima. Kljub pogostosti oligomernih proteinov je katepsin S, pripadnik
papainu podobnih cisteinskih proteaz, monomer. V sklopu naše diplomske naloge smo
želeli z uporabo bioinformatskih orodij določiti potencialne interakcijske ostanke in
uvesti substitucijske mutacije na površini katepsina S, ki bi posledično tvoril stabilen
homodimer.
V prvem delu naloge smo z uporabo različnih javno dostopnih programov določili
interakcijske ostanke na površini katepsina S ter določili površinske substitucije
aminokislin, ki bi povzročile spontano homodimerizacijo. S progrmom HADDOCK 2.4.
smo določili predvideno strukturo homodimera, zakopano površino in interakcijsko
energijo. S tremi točkovnimi mutacijami aminokislin (E15Y, P91W, K93W) smo uspeli
povečali zakopano površino na 2478,8 Å
2
ter izboljšali interakcijsko energijo
homodimera, s čimer smo ga stabilizirali Z računanjem molekulske dinamike smo
dokazali, da teoretično mutiran katepsin S (E15Y, P91W, K93W) z oznako MutS5 na
začetku tvori stabilen dimer, ki pa s časom postaja vse manj stabilen. To smo želeli
preveriti v praksi, zato smo izvedli še eksperimentalni del.
V ekperimentalnem delu smo z mestno-specifično mutagenezo uvedli mutacije v DNA
zapis za prokatepsin S vključen v plazmid pET-32/28b(+) in tega transformirali v Rosetta
Gami II [DE3] pLysS za ekspresijo proteina MutS5. Z NaDS-PAGE smo dokazali, da se
naš mutirani protein izraža predvsem v netopni obliki, kar pomeni, da se je najverjetneje
narobe zvil zaradi mutacij. V takšni obliki ne moremo dokazati, da pravilno zviti MutS5
tvori homodimer in pri tem ostane aktiven.
Keywords
encimi;proteinski inženiring;oligomerizacija;bioinformatska orodja;diplomska dela;
Data
Language: |
Slovenian |
Year of publishing: |
2022 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FKKT - Faculty of Chemistry and Chemical Technology |
Publisher: |
[T. Sotošek] |
UDC: |
577.15(043.2) |
COBISS: |
129798915
|
Views: |
66 |
Downloads: |
19 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Rational design and preparation of dimeric variants of human cathepsin S |
Secondary abstract: |
Most cellular proteins are oligomers. Oligomeric proteins have a smaller solventaccessible surface area than monomers, which increases their stability. At the same time,
oligomerization can increase the local concentration of active sites and thus improve
enzyme activity. Despite the frequency of oligomeric proteins, cathepsin S, a member of
papain-like cysteine proteases, is a monomer. As a part of our thesis, we wanted to use
bioinformatic tools to determine potential interactive residues and introduce substitution
mutations on the surface of cathepsin S, which would consequently form a stable
homodimer.
In the first part of the task, using various publicly available programs, we determined the
interactive residues on the surface of cathepsin S and determined the surface amino acid
substitutions that would cause spontaneous homodimerization. Using the HADDOCK
2.4. program we determined the predicted homodimer structure, buried surface area, and
interaction energy. With three point mutations of amino acids (E15Y, P91W, K93W), we
managed to increase the buried surface area to 2478.8 Å2 and improve the interactive
energy of the homodimer, thereby stabilizing it. , K93W) labeled MutS5 initially forms a
stable dimer, which becomes less stable over time. We wanted to verify this in practice,
so we carried out an experimental part.
In the experimental work we used site-specific mutagenesis to introduce mutations in the
procathepsin S DNA transcript included in the plasmid pET-32/28b(+) and transformed
it into Rosetta Gami II [DE3] pLysS for the expression of the MutS5 protein. Using SDSPAGE, we proved that our mutated protein was mainly expressed in an insoluble form,
which means that it was most likely misfolded due to our mutations. With obtained form
of the protein, we cannot prove that properly folded »MutS5« forms a homodimer and
remains active |
Secondary keywords: |
cysteine cathepsins;cathepsin S;protein engineering;Katepsini;Univerzitetna in visokošolska dela; |
Type (COBISS): |
Bachelor thesis/paper |
Study programme: |
1000371 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za kemijo in kemijsko tehnologijo, UNI Biokemija |
Pages: |
36 str. |
ID: |
16411138 |