delo diplomskega seminarja
Abstract
Naj bosta $g, h$ naključno izbrana elementa permutacijske grupe $S_n$. Ob predpostavki, da $g, h$ generirata $S_n$, pokažemo, da velja ${\rm diam}({\rm Cay}(S_n, \{g, h, g^{-1}, h^{-1}\})) \leq O(n^2(\log n)^c)$ z verjetnostjo $1- o(1)$ za neko konstanto $c$. Pri tem dokaz naslonimo na dejstvo, da imajo Schreierjevi grafi množice $r$-teric različnih števil iz $\{1, 2,\ldots, n\}$ glede na množico $d$ naključnih permutacij iz $S_n$ skoraj gotovo dobre ekspanzivne lastnosti, kar tudi dokažemo.
Keywords
matematika;ekspanzivni grafi;permutacijske grupe;Cayleyjev graf;premer;naključni sprehodi;
Data
| Language: |
Slovenian |
| Year of publishing: |
2022 |
| Typology: |
2.11 - Undergraduate Thesis |
| Organization: |
UL FMF - Faculty of Mathematics and Physics |
| Publisher: |
[T. Milanez] |
| UDC: |
512 |
| COBISS: |
121240835
|
| Views: |
1087 |
| Downloads: |
73 |
| Average score: |
0 (0 votes) |
| Metadata: |
|
Other data
| Secondary language: |
English |
| Secondary title: |
Walks with random permutations |
| Secondary abstract: |
Let $g, h$ be a random pair of elements of the permutation group $S_n$. Under the assumption that $g, h$ generate $S_n$, we show that ${\rm diam}({\rm Cay}(S_n, \{g, h, g^{-1}, h^{-1}\})) \leq O(n^2(\log n)^c)$ with probabilty $1-o(1)$ for some constant $c$. We base our proof on the fact that Schreier graphs on the set of $r$-tuples of distinct elements of $\{1, 2,\ldots, n\}$ with respect to the set of $d$ random permutations are almost always good expanders, which we also prove. |
| Secondary keywords: |
mathematics;expander graphs;permutation groups;Cayley graph;diameter;random walks; |
| Type (COBISS): |
Final seminar paper |
| Study programme: |
0 |
| Thesis comment: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja |
| Pages: |
32 str. |
| ID: |
16458503 |