diplomsko delo
Abstract
Za učinkovito učenje digitalne obdelave signalov je potreben učni pripomoček,
s katerim lahko enostavno izdelamo in preizkusimo digitalne sisteme. Izdelali
smo razvojni sistem, ki zajema zvočni signal iz poljubnega predvajalnika in ga
po digitalni obdelavi, ki jo sprogramira študent, rekonstruira in primerno ojači
za predvajanje s slušalkami.
Vhodna stopnja sistema je diferencialni ojačevalnik, ki odpravi morebitne
sofazne motnje. Sledi mešalnik, ki lahko vhodnemu signalu doda signal enega
razširitvenega modula. Razvili smo štiri razširitvene module: generator sinusnega
signala, generator belega šuma, predojačevalnik za kitaro in ojačevalnik
za mikrofon. Združen signal nato potuje skozi vhodni filter na analogno digitalni
pretvornik (ang.: Analog to Digital Converter – ADC). Razvojni sistem ima
namesto vgrajenega mikrokrmilnika, podnožje za razvojno ploščico NUCLEOG431KB,
s čimer lahko bolj plastično prikažemo, da je digitalni filter le algoritem,
ki teče na poljubnem računskem stroju. Mikrokrmilniški razvojni ploščici sledi
digitalno analogni pretvornik (ang.: Digital to Analog Converter – DAC) in temu
še ojačevalnik za slušalke.
Ugotovili smo, da je šumni prag pred ADC in za DAC enak, in sicer znaša
–120 dBV2/Hz. Več šuma je pri nižjih frekvencah zaradi vpliva omrežne frekvence.
Razmerje med signalom in šumom sistema, za čisti sinusni signal z amplitudo
0,25 V, kar predstavlja zmerno glasnost, znaša 54 dB. Frekvenčni odziv vezja
smo preizkušali z virom belega šuma, ki je pokazal, da sistem duši signale višje
od 20 kHz. Dokazali smo, da ima generator sinusnega signala najboljši THD pri
nižjih frekvencah, kjer znaša 0,68 %. Izmerili smo tudi frekvenčno karakteristiko
mikrofona. Presluh med obema kanaloma je enak –54 dB. Prisotnost šuma
in presluha sta dovolj majhna, da nista moteča pri poslušanju obdelanega signala.
Keywords
šum;avdio ojačevalniki;digitalni filtri;kitarski predojačevalniki;mikrofonski ojačevalniki;gostota močnostnega spektra;amplitudni spekter;visokošolski strokovni študij;Aplikativna elektrotehnika;diplomske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2022 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FE - Faculty of Electrical Engineering |
Publisher: |
[B. Veršnjak] |
UDC: |
621.38/.39:681.84(043.2) |
COBISS: |
123363843
|
Views: |
7 |
Downloads: |
3 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Teaching aid for digital signal processing |
Secondary abstract: |
Effective learning of digital signal processing requires a learning tool that
allows us to easily build and test digital systems. We designed a development
system that captures the sound signal from any player. The sound signal is then
digitally processed by program written by students. After that it is reconstructed
and suitably amplified for playback with headphones.
The input stage of the system is a differential amplifier that eliminates any
common mode noise. Next comes the mixer, which can add the signal of one of the
expansion modules to the input signal. We have developed four expansion modules:
a sine wave generator, a white noise generator, a guitar preamplifier, and a
microphone amplifier. The combined signal then travels through an input filter to
an analog to digital converter (ADC). Instead of an embeded microcontroller, the
development system has a socket for the NUCLEO-G431KB development board.
That allows us to show transparently that a digital filter is just an algorithm
that runs on any computing machine. The microcontroller development board is
followed by a digital-to-analog converter (DAC) and a headphone amplifier.
We found that the noise floor before the ADC and after the DAC is the
same, i.e. –120 dBV2/Hz . There is more noise at lower frequencies due to the
influence of the mains frequency. The signal-to-noise ratio of the system, for a
pure sinusoidal signal with an amplitude of 0,25 V which corresponds to moderate
volume is 54 dB. The frequency response of the circuit was tested by a white noise
generator, which showed that the system attenuates signals higher than 20 kHz.
We proved that the sine signal generator has the best THD at lower frequencies,
where it is equal to 0,68 %. We also measured the frequency response of the
microphone. The crosstalk between the two channels is equal to –54 dB. The
presence of noise and crosstalk is small enough to not affect the perceived quality
of the processed signal. |
Secondary keywords: |
noise;audio amplifier;digital filter;guitar preamplifier;microphone amplifier;power spectral density;amplitude spectrum; |
Type (COBISS): |
Bachelor thesis/paper |
Study programme: |
1000315 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za elektrotehniko |
Pages: |
XXII, 60 str. |
ID: |
16596556 |