easy machine learning for biospectroscopy
Abstract
Data volumes collected in many scientific fields have long exceeded the capacity of human comprehension. This is especially true in biomedical research where multiple replicates and techniques are required to conduct reliable studies. Ever-increasing data rates from new instruments compound our dependence on statistics to make sense of the numbers. The currently available data analysis tools lack user-friendliness, various capabilities or ease of access. Problem-specific software or scripts freely available in supplementary materials or research lab websites are often highly specialized, no longer functional, or simply too hard to use. Commercial software limits access and reproducibility, and is often unable to follow quickly changing, cutting-edge research demands. Finally, as machine learning techniques penetrate data analysis pipelines of the natural sciences, we see the growing demand for user-friendly and flexible tools to fuse machine learning with spectroscopy datasets. In our opinion, open-source software with strong community engagement is the way forward. To counter these problems, we develop Quasar, an open-source and user-friendly software, as a solution to these challenges. Here, we present case studies to highlight some Quasar features analyzing infrared spectroscopy data using various machine learning techniques.
Keywords
odprtokodna programska oprema;strojno učenje;vizualno programiranje;analiza podatkov;spektroskopija;open source;machine learning;visual programming;data exploration;data analysis;spectoscopy;
Data
Language: |
English |
Year of publishing: |
2021 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UL FRI - Faculty of Computer and Information Science |
UDC: |
004.8:543.422.3-74 |
COBISS: |
125220867
|
ISSN: |
2073-4409 |
Views: |
67 |
Downloads: |
18 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary keywords: |
odprtokodna programska oprema;strojno učenje;vizualno programiranje;analiza podatkov;spektroskopija; |
Type (COBISS): |
Article |
Pages: |
str. 1-10 |
Volume: |
ǂVol. ǂ10 |
Issue: |
ǂiss. ǂ9 |
Chronology: |
Sep. 2021 |
DOI: |
10.3390/cells10092300 |
ID: |
16736362 |