magistrsko delo
Abstract
Cilj magistrske naloge je preučiti detekcijo napak na odlitkih z uporabo konvolucijskih
nevronskih mrež. Predstavljena je klasifikacija slik dobrih in slabih odlitkov, ki temelji na
globokem učenju. Za učenje nevronske mreže smo uporabili obstoječo zbirko podatkov,
ki vsebuje več kot 7000 slik. Za izdelavo programa smo uporabili okolje Matlab s pomočjo
Deep learning toolbox vmesnika. Izdelali smo model konvolucijske nevronske mreže,
izvedli učenje in prikazali rezultate. V drugem delu smo rezultate želeli izboljšati, zato
smo se poslužili tehnike s prenosnim učenjem. Našim potrebam smo prilagodili obstoječo
AlexNet arhitekturo, naložili zbirko podatkov in izvedli učenje nevronske mreže. Na koncu
prikažemo rezultate kot je klasifikacijska točnost modela. Delovanje modela preizkusimo
še na testni množici slik, katere niso bile vključene v proces učenja.
Keywords
Globoko učenje;detekcija napak;klasifikacija;konvolucijska nevronska
mreža;odlitek;magistrske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2022 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UM FS - Faculty of Mechanical Engineering |
Publisher: |
[T. Pšeničnik] |
UDC: |
004.85:621.747.019(043.2) |
COBISS: |
151766019
|
Views: |
206 |
Downloads: |
27 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Castings defect detection using deep learning |
Secondary abstract: |
The aim of the master's thesis is to study defect detection on castings with the use of
convolutional neural networks. Classification of good and bad castings that works on the
principle of deep learning is presented. We use an existing large database that consists
of more than 7000 pictures to train the neural network. Our convolutional neural
network model was designed in Matlab with the help of Deep learning toolbox. We
designed our convolutional neural network model, trained it and displayed the results.
We wanted to improve the results, so we tried the transfer learning technique. We
modify an existing AlexNet model to fit our application, load the dataset and train the
new model. At the end we show the results such as classification error of our model. We
test the models accuracy on some pictures that were not included in the process of
training. |
Secondary keywords: |
Deep learning;defect detection;classification;convolutional neural network;casting; |
Type (COBISS): |
Master's thesis/paper |
Thesis comment: |
Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Mehatronika |
Pages: |
1 spletni vir (1 datoteka PDF (X, 36 f.)) |
ID: |
16833777 |