Simon Kolmanič (Author), Nikola Guid (Author)

Abstract

In this paper, we present a new efficient algorithm for reconstruction of nonintersecting 3D curves from a sufficiently den se sample. We use the Euclidean minimal spanning trees to identify line segments reconstructing curve shapes. To deal with more than one curve in a sample and to eliminate noisy data, we introduce chains of connected line segments. With the incremental growth based on heuristics, the chains contain finally curve shapes. The method is robust and fast for both 2D and 3D curves.

Keywords

point cloud;curve reconstruction;euclidean minimal spanning trees;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FERI - Faculty of Electrical Engineering and Computer Science
Publisher: Elektrotehniška zveza Slovenije
UDC: 681.5
COBISS: 10673174 Link will open in a new window
ISSN: 0013-5852
Views: 1259
Downloads: 29
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Rekonstrukcija prostorskih krivulj s pomočjo evklidskih minimalnih vpetih dreves
Secondary abstract: V članku predstavljamo nov učinkovit algoritem za rekonstrukcijo prostorskih krivulj iz dovolj gostega vzorca. S pomočjo evklidskih minimalnih vpetih dreves poiščemo tiste daljice, ki rekonstruirajo krivuljo. Za delo z več krivuljami v vzorcu in odstranitev točk šuma uporabljamo strukturo, ki jo imenujmo verige povezanih daljic. Z inkrementalno rastjo, ki temelji na hevristiki, dobimo v verigah iskano rekonstrukcijo krivulj. Predstavljena metoda je robustna in hitra tako pri rekonstrukciji ravninskih kot tudi prostorskih krivulj.
Secondary keywords: oblaki točk;rekonstrukcija krivulj;evklidska minimalna vpeta drevesa;
URN: URN:NBN:SI
Type (COBISS): Not categorized
Pages: str. 84-92
Volume: ǂVol. ǂ73
Issue: ǂno. ǂ2-3
Chronology: 2006
ID: 1740174