magistrsko delo
Abstract
V delu predstavimo nov pristop k detekciji globokih ponaredkov. Globoki ponaredek je tip medija, t.j. slika ali video posnetek, pri katerem je del
slike, najpogosteje obraz ali telo digitalno modificirano. Velikokrat so uporabljeni za zle namene, kot je ˇsirjenje dezinformacij; najpogosteje so generirani
s pomočjo globokih ali generativnih nasprotniških mrež. Digitalna modifikacija medija pogosto pusti t.i. digitalne artefakte v podatkovnem zapisu
medija. Artefakte definiramo kot značilke v podatkih slikovnih elementov na
digitalnem mediju, ki nastopijo kot nezaželena posledica modifikacije medija.
V delu predstavimo pet metod detekcije globokih ponaredkov s pomočjo detekcije artefaktov generativnih nasprotniških mrež. Predstavljene metode
evalviramo na sedmih različnih podatkovnih bazah globokih ponaredkov, ki
jih dodatno razdelimo na take, ki so primarno generirane z generativno nasprotniško mrežo, in na te, ki niso. Pokažemo, da predstavljene metode
dosegajo obetavne rezultate na pripravljenih podatkovnih bazah.
Keywords
globoki ponaredki;generativna nasprotniška mreža;nevronska mreža;artefakt;slikovna biometrija;magisteriji;
Data
Language: |
Slovenian |
Year of publishing: |
2022 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UL FRI - Faculty of Computer and Information Science |
Publisher: |
[V. Križnar] |
UDC: |
004.8:7.061(043.2) |
COBISS: |
136512515
|
Views: |
29 |
Downloads: |
6 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Detection of generative adversarial network artefacts as an aid for detecting deepfakes |
Secondary abstract: |
We present a novelty approach to deepfake detection. Deepfake is a type
of media, usually a picture or video, in which a part of the picture, most frequently face or body, has been digitally modified. Deepfakes are often used
with ill intentions, such as spreading misinformation or opinion formulation.
Modification of digital media usually leaves traces, a so-called digital artefacts. Artefacts can be defined as irregularities in digital media which are
unwanted consequences of modification. We present five methods for detecting deepfakes by detecting artefacts of generative adversarial networks. We
evaluate the presented methods on seven different deepfake databases which
are further divided into those that are primarily generated by a generative
adversarial network and those that are not. We show that the presented
methods achieve promising results on the prepared databases. |
Secondary keywords: |
deepfakes;generative adversarial network;neural network;artefact;imagebased biometrics;computer science;computer and information science;master's degree;Ponarejanje in ponaredki;Globoko učenje (strojno učenje);Nevronske mreže (računalništvo);Računalništvo;Univerzitetna in visokošolska dela; |
Type (COBISS): |
Master's thesis/paper |
Study programme: |
1000471 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
Pages: |
59 str. |
ID: |
17480029 |